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Outline

We generalize the notion of average-convexity to weighted
average-convexity.

We extend a result about the Shapley value and the core to the
weighted Shapley value.

We investigate inheritance of weighted average-convexity for
communication TU-games.

Necessary conditions.
Extension of some known conditions for inheritance of average
convexity.
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2 Inheritance of weighted average convexity

3



Definitions

Set of players N = {1, 2, . . . , n}.

Cooperative TU game (N, v) :
v : 2N → IR, v(∅) = 0. Coalition S ⊆ N → worth v(S).

An allocation is a vector x ∈ IRN representing the respective payoff of each
player. It is efficient if

∑

i∈N

xi = v(N).

and individually rational if

∀i ∈ N, xi ≥ v ({i}) .
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Shapley value

The Shapley value of a cooperative game (N, v) is an allocation vector
Φ ∈ IRN assigning to each player i ∈ N :

Φi (v) =
∑

S⊆N\{i}

s!(n − s − 1)!

n!
(v(S ∪ {i})− v(S)).
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Decomposition into unanimity games

[Shapley, 1953b] : Every cooperative game (N, v) can be written as a
unique linear combination of unanimity games,

v =
∑

S⊆N

λS(v)uS ,

where λ∅(v) = 0, and ∀S 6= ∅ the coefficients λS(v) are given by

λS(v) =
∑

T⊆S

(−1)s−tv(T ).
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Shapley value

Definition

The Shapley value is the unique function from the set of TU-games to
payoff allocations such that

1 It is linear,

2 The allocation of the unanimity game uS is for all i ∈ N,

xi =

{

1
s
, if i ∈ S ,

0 otherwise.

In terms of the unanimity coefficients the Shapley value is given by

Φi (v) =
∑

S⊆N: i∈S

1

s
λS(v),

for all i ∈ N.
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Core

Definition

The core is the set of payoff allocations satisfying efficiency and coalitional
rationality. Formally,

C(v) =

{

x ∈ R
N ,

∑

i∈N

xi = v(N),
∑

i∈S

xi ≥ v(S), ∀S ⊂ N

}

.

Condition ensuring that the Shapley value lies in the core ?

Convexity
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Convexity

Definition

The game (N, v) is convex if for every S ,T ⊆ N

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ),

or equivalently if for all i ∈ N and for all S ⊆ T ⊆ N \ {i}

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ).

→ Tendency to join the largest coalitions.

Convexity ensures good properties, in particular

Non-emptiness of the core.

Shapley value belongs to the core.

A weaker sufficient condition ?
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Average convexity

Definition

The game (N, v) is average convex if for every S ⊂ T ⊆ N,

∑

i∈S

(v(S)− v(S \ {i})) ≤
∑

i∈S

(v(T )− v(T \ {i})) .

Proposition ([Iñarra and Usategui, 1993])

If the game is average convex then the Shapley value is in the core.
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Weighted Shapley value

The Shapley value has been extended in [Shapley, 1953a] and in
[Kalai and Samet, 1987] to weighted Shapley value.

Weights on the players : i ∈ N → weight ωi ∈ R
N
+

Priorities on the players : i ∈ N → priority p(i) ∈ {1, 2, . . . ,m} with
m ≤ n.
→ N can be partitionned into m subsets (N1, ...,Nm) corresponding to the
m levels of priority.

Weight relative to a coalition S ⊆ N : player i ∈ S gets weight ωS
i

with

ωS
i =

{

ωi if i has highest priority in S
0 otherwise
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Weighted Shapley Value - Weight system

Definition

A weight system is a pair (ω,Σ) where ω ∈ R
N
++ and Σ = (N1, ...,Nm) is

an ordered partition of N.

Players in Nk have priority k .

Given a set S , the priority p(S) of S is the largest k ∈ {1, · · · ,m} such
that Nk ∩ S 6= ∅.

S := set of players in S with highest priority, i.e.,

S = {i ∈ S , p(i) = p(S)}.

If m = 1 then Σ = N.
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Weighted Shapley Value

Definition

The weighted Shapley value with weight system (ω,Σ) is the unique
function from the set of TU-games to allocation such that

1 it is linear,

2 the allocation of the unanimity game uS is defined as follows : for all
i ∈ N,

xi =
ωS
i

∑

i∈S ω
S
i

=

{

ωi∑
i∈S

ωi
, if i ∈ S ,

0 otherwise.

agents in S − S are contributing to obtain a positive payoff but they
have low priority, hence they obtain 0,

agents in S are contributing to obtain a positive payoff and have
highest priority in S , hence they share the total value of 1.
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Weighted Shapley Value

Using the decomposition of a game into unanimity games, the
(ω,Σ)-weighted Shapley value Φω of a game (N, v) is defined for all i ∈ N
by

Φω

i (v) =
∑

S⊆N: i∈S

ωi

ωS
λS(v).

If Σ = {N} and if all weights are equal, then the (ω,Σ)-weighted
Shapley value corresponds to the Shapley value.
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Weighted average convexity

We introduce the notion of weighted average convexity.

Definition

Let (ω,Σ) be a weight system. The game (N, v) is (ω,Σ)-convex if for
every S ⊂ T ⊆ N,

∑

i∈S

ωi
T (v(S)− v(S \ {i})) ≤

∑

i∈S

ωi
T (v(T )− v(T \ {i})) .

It is sufficient to consider subsets such that p(S) = p(T ).

If Σ = {N} and if all weights are equal, then (ω,Σ)-convexity
corresponds to average-convexity.

If a game is convex then it is (ω,Σ)-convex for any weight system
(ω,Σ).
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We get the following result

Theorem

Let (ω,Σ) be a weight system. If the game is (ω,Σ)-convex then its
(ω,Σ)-weighted Shapley value is in the core.

We establish a recurrence formula for the weighted Shapley value. For
any ∅ 6= T ⊆ N, let vT be the subgame of v induced by T . i.e.,
vT (S) = v(S) for any S ⊆ T . We have

Φω

iT =
ωT
i

ωT
(v(T )− v(T \ {i})) +

∑

j∈T\{i}

ωT
j

ωT
Φω

iT\{j},

for all i ∈ T .

Then we can prove the theorem by recurrence on the number of
players.
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1 Weighted average convexity and Shapley value

2 Inheritance of weighted average convexity

17



Inheritance of properties

Coalition → partition into (sub)coalitions → Restricted game

1 Conditions insuring inheritance of convexity

2 Conditions for inheritance of average convexity

3 Conditions for inheritance of weighted average convexity

Myerson’s restricted game

Results for 1 and 2 have been established by
[van den Nouweland and Borm, 1991] and [Slikker, 1998] respectively.

We investigate 3 : inheritance of weighted average convexity.
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Myerson’s restricted game

Cooperative game (N, v) and graph G = (N,E ).

nodes ↔ players
edge e = {i , j} ↔ players i and j can communicate directly

For every coalition A ⊆ N, let Pc(A) be the set of connected components
of GA = (A,E (A)).

Myerson defined the graph-restricted game (N, vG ) by :

vG (A) =
∑

F∈Pc (A)

v(F ), ∀A ⊆ N.

Players have to be connected to cooperate.

Connectedness is sufficient.
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Myerson’s restricted game

If GA is connected

A

1

2

3

4 5 6 7

8 9 10

11 12 13

GA

3

4 5 6

9

vG (A) = v(A).
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If GA is non-connected, let {A1,A2, . . . ,Ak} be the partition of A, then

vG (A) =
k

∑

j=1

v(Aj).

A

1

2

3

4 5 6 7

8 9 10

11 12 13

GA

3

5 6

8 9

11

A1

A2

vG (A) = v(A1) + v(A2).
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Inheritance of convexity

Conditions on the underlying graph

Definition

A cycle C = {v1, e1, v2, e2, . . . , vm, em, v1} is complete (resp.
non-complete) if the subset {v1, v2, . . . vm} ⊆ N of vertices of C induces a
complete (resp. non-complete) subgraph.

j

1 l

m k

Figure – Non-complete cycle C , {j , k} /∈ E .

Definition

A graph G = (N,E ) is cycle-complete if any cycle C in G is complete.
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Inheritance of convexity

Forbidden subgraphs :

Non-complete cycle

Theorem (van den Nouweland and Borm 1991)

Let G = (N,E ) be a connected graph. The following properties are
equivalent.

1 G preserves convexity

2 G is cycle-complete.
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Inheritance of average-convexity

Forbidden subgraphs :

Non-complete cycle

4-path

3-pan

i j k l

(a) 4-path.
k

j

i l

(b) 3-pan.

Theorem (Slikker)

Let G = (N,E ) be a connected graph. The following properties are
equivalent.

1 G preserves average-convexity.
2 1 G is cycle-complete.

2 There is no restricted subgraph that is a 4-path or a 3-pan.

3 G is a complete graph or a star.
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Inheritance of weighted average convexity

First Case : All players have the same priority, Σ = {N}.

Players can have different weights.

We get the same characterization as Slikker with average convexity.

Theorem

Let G = (N,E ) be a connected graph and let (ω,Σ) be a weight system
with Σ = {N}. The following properties are equivalent.

1 G preserves (ω,Σ)-convexity.

2 1 G is cycle-complete.

2 There is no restricted subgraph that is a 4-path or a 3-pan.

3 G is a complete graph or a star.
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Proof

Similarly to Slikker we have to prove that G cannot contain any
4-path or 3-pan.

Counter-examples are more difficult as they have to be valid for
arbitrary weights.
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Counter-Example (Weighted Non-complete cycle)

Let j and k be neighbors of l∗ in C with {j , k} /∈ E . We consider the

convex game defined by v(S) = |S | − 1, ∀S ⊆ N, S 6= ∅.

j

1 l∗

m k

Figure – Non-complete cycle C , {j , k} /∈ E .

Taking S = {j , l∗, k} and T = V (C ), we get

∑

i∈S

ωi (v
G (S)− vG (S \ {i})) = ωj + 2ωl∗ + ωk > ωj + ωl∗ + ωk =

∑

i∈S

ωi (v
G (T )− vG (T \ {i})).

This contradicts (ω,Σ)-convexity of (N, vG ).
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Counter-Example (3-pan)

4

1

2 3

Figure

X=1+
ω3
ω4

,

Y=1+
ω1
ω4

,

Z=X+Y+1+
ω1

ω2+ω3+ω4
X ,

Θ=Z+X−1.

v(S) =



















































0 if |S |∈{0,1,2} and S 6={1,4},{3,4},

0 if S={1,2,3},

X if S={1,4} or {1,2,4},

Y if S={3,4},

X+Y−1 if S={1,3,4},

Z if S={2,3,4},

Θ if S=N.

v is weighted average convex.

But vG is not.

We get a contradiction with

S = {2, 3, 4} ⊂ T =
{1, 2, 3, 4}.
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Counter-Example (3-pan)

4

2 3

(a) GS

4

3

(b) GS \ {2}
4

1

2 3

(a) GT

4

1

3

(b) GT \ {2}

v(S) =



















































0 if |S |∈{0,1,2} and S 6={1,4},{3,4},

0 if S={1,2,3},

X if S={1,4} or {1,2,4},

Y if S={3,4},

X+Y−1 if S={1,3,4},

Z if S={2,3,4},

Θ if S=N.

vG (S) =



















































0 if |S |∈{0,1,2} and S 6={1,4},{3,4},

0 if S={1,2,3},

X if S={1,4} or {1,2,4},

0 if S={3,4},

X if S={1,3,4},

Z if S={2,3,4},

Θ if S=N
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Remark

The previous counter-example is also valid for the 4-path.
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Inheritance of weighted average convexity

Second Case : Players with different priorities, Σ 6= {N}.

Using the preceding results, the situation for players in a given priority
layer can be easily established.

Proposition

If a graph (N,E ) preserves the (ω,Σ)-convexity, given a priority k, the set
of players of priority k corresponds to a collection of disconnected
star/complete subgraphs.
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Inside priority layers

ck ′

k

32



Inheritance of weighted average convexity

Links between layers ?

The previous counter-examples have to be refined and supplementary
conditions are required.
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Inheritance of weighted average convexity

We get a similar counterexample for non-complete cycles but only if
p(l∗) = p(V (C )).

j

1 l∗

m k

Figure – Non-complete cycle C , {j , k} /∈ E .

Taking S = {j , l∗, k} and T = V (C ), we get
∑

i∈S

ωT
i (v

G (S)− vG (S \ {i})) = ωT
j + 2ωT

l∗ + ωT
k

> ωT
j + ωT

l∗ + ωT
k =

∑

i∈S

ωT
i (v

G (T )− vG (T \ {i})).
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Inheritance of weighted average convexity

4

1

2 3

Figure

The previous example on the 3-
pan is now valid only if

p(2) = p(3) = p(4) ≥ p(1),

or

p(2) > p(4) ≥ max(p(1), p(3)).

We established 2 supplementary counter-examples for other priority
distributions.

We get a very precise outline if the communication graph is cycle-free.
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Inheritance of weighted average convexity

Lemma

Let G = (N,E ) be a cycle-free graph preserving (ω,Σ)-convexity. Let
k ≤ k ′ < k ′′be priority levels. Let C1 (resp. C2) be a component of Gk

(resp. Gk ′) linked to a component C of Gk ′′ . Then the following
statements are satisfied :

1 C and C1 are stars (possibly of size 1 or 2).

2 C2 is a singleton.

3 C2 is linked to C only at its center c.

4 C1 is linked to C only at its center c by a unique edge.

5 C2 cannot be linked to connected components of a lower layer.

Moreover, if k = k ′, then

1 C1 is a singleton.

2 C1 cannot be linked to connected components of a lower layer.
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Inheritance of weighted average convexity

c

j1 j2

k ′′

k
k

(a) If k = k
′ then C1 and C2 are

singletons.

c

j2

j1

k ′′

k ′

k

(b) k < k
′, C2 is a singleton.
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