Weighted Average-convexity and Cooperative Games

Alexandre Skoda¹ Xavier Venel²

¹Université de Paris I, Centre d'Economie de la Sorbonne

²Dipartimento di Economia e Finanza, LUISS

We generalize the notion of average-convexity to weighted average-convexity.

- We extend a result about the Shapley value and the core to the weighted Shapley value.
- We investigate inheritance of weighted average-convexity for communication TU-games.
 - Necessary conditions.
 - Extension of some known conditions for inheritance of average convexity.

1 Weighted average convexity and Shapley value

2 Inheritance of weighted average convexity

Set of players $N = \{1, 2, ..., n\}$.

Cooperative TU game (N, v): $v: 2^N \to \mathbb{R}, v(\emptyset) = 0$. Coalition $S \subseteq N \to \text{worth } v(S)$.

An *allocation* is a vector $x \in \mathbb{R}^N$ representing the respective payoff of each player. It is *efficient* if

$$\sum_{i\in N} x_i = v(N).$$

and individually rational if

$$\forall i \in N, \ x_i \geq v\left(\{i\}\right).$$

The Shapley value of a cooperative game (N, v) is an allocation vector $\Phi \in \mathbb{R}^N$ assigning to each player $i \in N$:

$$\Phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{s!(n-s-1)!}{n!} (v(S \cup \{i\}) - v(S)).$$

[Shapley, 1953b] : Every cooperative game (N, v) can be written as a unique linear combination of unanimity games,

$$v=\sum_{S\subseteq N}\lambda_S(v)u_S,$$

where $\lambda_{\emptyset}(v) = 0$, and $\forall S \neq \emptyset$ the coefficients $\lambda_{S}(v)$ are given by

$$\lambda_{\mathcal{S}}(\mathbf{v}) = \sum_{\mathcal{T} \subseteq \mathcal{S}} (-1)^{s-t} \mathbf{v}(\mathcal{T}).$$

The **Shapley value** is the unique function from the set of TU-games to payoff allocations such that

- It is linear,
- **2** The allocation of the unanimity game u_S is for all $i \in N$,

$$x_i = \begin{cases} \frac{1}{s}, & \text{ if } i \in S, \\ 0 & \text{ otherwise.} \end{cases}$$

In terms of the unanimity coefficients the Shapley value is given by

$$\Phi_i(\mathbf{v}) = \sum_{S \subseteq N: i \in S} \frac{1}{s} \lambda_S(\mathbf{v}),$$

for all $i \in N$.

The *core* is the set of payoff allocations satisfying efficiency and coalitional rationality. Formally,

$$\mathcal{C}(v) = \left\{ x \in \mathbb{R}^N, \ \sum_{i \in \mathcal{N}} x_i = v(\mathcal{N}), \ \sum_{i \in \mathcal{S}} x_i \geq v(\mathcal{S}), \forall \mathcal{S} \subset \mathcal{N} \right\}$$

Condition ensuring that the Shapley value lies in the core?

Convexity

The game (N, v) is *convex* if for every $S, T \subseteq N$

$$v(S) + v(T) \leq v(S \cup T) + v(S \cap T),$$

or equivalently if for all $i \in N$ and for all $S \subseteq T \subseteq N \setminus \{i\}$

$$v(S \cup \{i\}) - v(S) \leq v(T \cup \{i\}) - v(T).$$

 \rightarrow Tendency to join the largest coalitions.

Convexity ensures good properties, in particular

- Non-emptiness of the core.
- Shapley value belongs to the core.

A weaker sufficient condition?

The game (N, v) is average convex if for every $S \subset T \subseteq N$,

$$\sum_{i\in \mathcal{S}} \left(v(\mathcal{S}) - v(\mathcal{S}\setminus\{i\})
ight) \leq \sum_{i\in \mathcal{S}} \left(v(\mathcal{T}) - v(\mathcal{T}\setminus\{i\})
ight).$$

Proposition ([Iñarra and Usategui, 1993])

If the game is average convex then the Shapley value is in the core.

The Shapley value has been extended in [Shapley, 1953a] and in [Kalai and Samet, 1987] to weighted Shapley value.

Weights on the players : $i \in N \rightarrow \text{weight } \omega_i \in \mathbb{R}^N_+$

Priorities on the players : $i \in N \rightarrow \text{priority } p(i) \in \{1, 2, ..., m\}$ with $m \leq n$.

 \rightarrow N can be partitionned into m subsets (N₁, ..., N_m) corresponding to the m levels of priority.

Weight relative to a coalition $S \subseteq N$: player $i \in S$ gets weight ω_i^S with

$$\omega_i^S = \begin{cases} \omega_i & \text{if } i \text{ has highest priority in } S \\ 0 & \text{otherwise} \end{cases}$$

11

Weighted Shapley Value - Weight system

Definition

A weight system is a pair (ω, Σ) where $\omega \in \mathbb{R}_{++}^N$ and $\Sigma = (N_1, ..., N_m)$ is an ordered partition of N.

Players in N_k have priority k.

Given a set S, the priority p(S) of S is the largest $k \in \{1, \dots, m\}$ such that $N_k \cap S \neq \emptyset$.

 \overline{S} := set of players in S with highest priority, i.e.,

$$\overline{S} = \{i \in S, p(i) = p(S)\}.$$

If m = 1 then $\Sigma = N$.

Weighted Shapley Value

Definition

The weighted Shapley value with weight system (ω, Σ) is the unique function from the set of *TU*-games to allocation such that

- it is linear,
- ② the allocation of the unanimity game u_S is defined as follows : for all i ∈ N,

$$x_i = \frac{\omega_i^S}{\sum_{i \in S} \omega_i^S} = \begin{cases} \frac{\omega_i}{\sum_{i \in \overline{S}} \omega_i}, & \text{if } i \in \overline{S}, \\ 0 & \text{otherwise.} \end{cases}$$

- agents in $S \overline{S}$ are contributing to obtain a positive payoff but they have low priority, hence they obtain 0,
- agents in \overline{S} are contributing to obtain a positive payoff and have highest priority in S, hence they share the total value of 1.

Using the decomposition of a game into unanimity games, the (ω, Σ) -weighted Shapley value Φ^{ω} of a game (N, v) is defined for all $i \in N$ by

$$\Phi_i^{\omega}(v) = \sum_{S \subseteq N: i \in \overline{S}} \frac{\omega_i}{\overline{\omega}^S} \lambda_S(v).$$

 If Σ = {N} and if all weights are equal, then the (ω, Σ)-weighted Shapley value corresponds to the Shapley value. We introduce the notion of weighted average convexity.

Definition

Let (ω, Σ) be a weight system. The game (N, v) is (ω, Σ) -convex if for every $S \subset T \subseteq N$,

$$\sum_{i \in S} \overline{\omega_i}^{\mathcal{T}} \left(v(S) - v(S \setminus \{i\}) \right) \leq \sum_{i \in S} \overline{\omega_i}^{\mathcal{T}} \left(v(\mathcal{T}) - v(\mathcal{T} \setminus \{i\}) \right)$$

- It is sufficient to consider subsets such that p(S) = p(T).
- If Σ = {N} and if all weights are equal, then (ω, Σ)-convexity corresponds to average-convexity.
- If a game is convex then it is (ω, Σ)-convex for any weight system (ω, Σ).

Theorem

Let (ω, Σ) be a weight system. If the game is (ω, Σ) -convex then its (ω, Σ) -weighted Shapley value is in the core.

• We establish a recurrence formula for the weighted Shapley value. For any $\emptyset \neq T \subseteq N$, let v^T be the subgame of v induced by T. *i.e.*, $v^T(S) = v(S)$ for any $S \subseteq T$. We have

$$\Phi_{iT}^{\omega} = \frac{\overline{\omega}_i^T}{\overline{\omega}^T} (v(T) - v(T \setminus \{i\})) + \sum_{j \in T \setminus \{i\}} \frac{\overline{\omega}_j^T}{\overline{\omega}^T} \Phi_{iT \setminus \{j\}}^{\omega},$$

for all $i \in T$.

• Then we can prove the theorem by recurrence on the number of players.

2 Inheritance of weighted average convexity

Coalition \rightarrow partition into (sub)coalitions \rightarrow Restricted game

- Conditions insuring inheritance of convexity
- Onditions for inheritance of average convexity
- Source of weighted average convexity

Myerson's restricted game

- Results for 1 and 2 have been established by [van den Nouweland and Borm, 1991] and [Slikker, 1998] respectively.
- We investigate 3 : inheritance of weighted average convexity.

Cooperative game (N, v) and graph G = (N, E).

nodes \leftrightarrow players edge $e = \{i, j\} \leftrightarrow$ players *i* and *j* can communicate directly r every coalition $A \subseteq N$, let $\mathcal{P}_{e}(A)$ be the set of connected component

For every coalition $A \subseteq N$, let $\mathcal{P}_c(A)$ be the set of connected components of $G_A = (A, E(A))$.

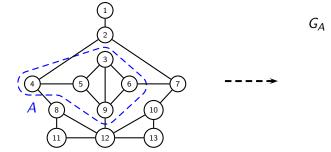
Myerson defined the graph-restricted game (N, v^G) by :

$$v^{G}(A) = \sum_{F \in \mathcal{P}_{c}(A)} v(F), \ \forall A \subseteq N.$$

- Players have to be connected to cooperate.
- Connectedness is sufficient.

Myerson's restricted game

If G_A is connected

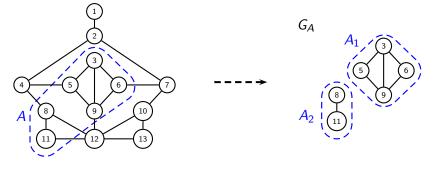


4-5 6

 $v^G(A)=v(A).$

If G_A is non-connected, let $\{A_1, A_2, \dots, A_k\}$ be the partition of A, then

$$v^{G}(A) = \sum_{j=1}^{k} v(A_j).$$



$$v^{G}(A) = v(A_{1}) + v(A_{2}).$$

Inheritance of convexity

• Conditions on the underlying graph

Definition

A cycle $C = \{v_1, e_1, v_2, e_2, \dots, v_m, e_m, v_1\}$ is **complete** (resp. non-complete) if the subset $\{v_1, v_2, \dots, v_m\} \subseteq N$ of vertices of C induces a complete (resp. non-complete) subgraph.

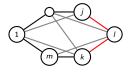


FIGURE – Non-complete cycle C, $\{j, k\} \notin E$.

Definition

A graph G = (N, E) is **cycle-complete** if any cycle C in G is complete.

Forbidden subgraphs :

• Non-complete cycle

Theorem (van den Nouweland and Borm 1991)

Let G = (N, E) be a connected graph. The following properties are equivalent.

- G preserves convexity
- G is cycle-complete.

Inheritance of average-convexity

Forbidden subgraphs :

- Non-complete cycle
- 4-path
- 3-pan

(a) 4-path.

Theorem (Slikker)

Let G = (N, E) be a connected graph. The following properties are equivalent.

- G preserves average-convexity.
- 2 G is cycle-complete.
 - There is no restricted subgraph that is a 4-path or a 3-pan.
- G is a complete graph or a star.

First Case : All players have the same priority, $\Sigma = \{N\}$.

• Players can have different weights.

We get the same characterization as Slikker with average convexity.

Theorem

Let G = (N, E) be a connected graph and let (ω, Σ) be a weight system with $\Sigma = \{N\}$. The following properties are equivalent.

- G preserves (ω, Σ) -convexity.
- 2 G is cycle-complete.
 - O There is no restricted subgraph that is a 4-path or a 3-pan.
- G is a complete graph or a star.

- Similarly to Slikker we have to prove that *G* cannot contain any 4-path or 3-pan.
- Counter-examples are more difficult as they have to be valid for arbitrary weights.

Counter-Example (Weighted Non-complete cycle)

Let j and k be neighbors of l^* in C with $\{j, k\} \notin E$. We consider the convex game defined by $v(S) = |S| - 1, \forall S \subseteq N, S \neq \emptyset$.

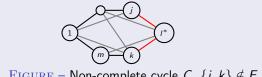


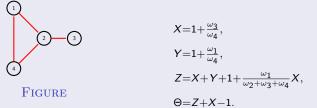
FIGURE – Non-complete cycle C, $\{j, k\} \notin E$.

Taking $S = \{i, l^*, k\}$ and T = V(C), we get

$$\sum_{i \in S} \omega_i (v^G(S) - v^G(S \setminus \{i\})) = \omega_j + 2\omega_{I^*} + \omega_k > \omega_j + \omega_{I^*} + \omega_k = \sum_{i \in S} \omega_i (v^G(T) - v^G(T \setminus \{i\}))$$

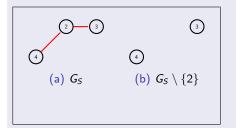
This contradicts (ω, Σ) -convexity of (N, v^G) .

Counter-Example (3-pan)



$$v(S) = \begin{cases} 0 \text{ if } |S| \in \{0,1,2\} \text{ and } S \neq \{1,4\}, \{3,4\}, \\ 0 \text{ if } S = \{1,2,3\}, & v \text{ is weighted average convex.} \\ X \text{ if } S = \{1,4\} \text{ or } \{1,2,4\}, & \text{But } v^G \text{ is not.} \\ Y \text{ if } S = \{3,4\}, & S = \{2,3,4\} \subset T = \\ X+Y-1 \text{ if } S = \{1,3,4\}, & \{1,2,3,4\}. \\ Z \text{ if } S = \{2,3,4\}, \\ \Theta \text{ if } S = N. \end{cases}$$

Counter-Example (3-pan)



$$(a) G_T$$

$$v(S) = \begin{cases} 0 \text{ if } |S| \in \{0,1,2\} \text{ and } S \neq \{1,4\}, \{3,4\}, \\ 0 \text{ if } S = \{1,2,3\}, \\ X \text{ if } S = \{1,4\} \text{ or } \{1,2,4\}, \\ Y \text{ if } S = \{3,4\}, \\ X + Y - 1 \text{ if } S = \{1,3,4\}, \\ Z \text{ if } S = \{2,3,4\}, \\ \Theta \text{ if } S = N. \end{cases} \xrightarrow{V^G(S)} \begin{cases} 0 \text{ if } |S| \in \{0,1,2\} \text{ and } S \neq \{1,4\}, \{3,4\}, \\ 0 \text{ if } S = \{1,2,3\}, \\ X \text{ if } S = \{1,2,3\}, \\ X \text{ if } S = \{1,4\} \text{ or } \{1,2,4\}, \\ 0 \text{ if } S = \{3,4\}, \\ X \text{ if } S = \{1,3,4\}, \\ Z \text{ if } S = \{2,3,4\}, \\ \Theta \text{ if } S = N. \end{cases} \xrightarrow{Q0}$$

Remark

The previous counter-example is also valid for the 4-path.

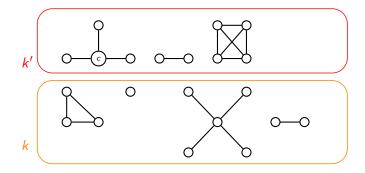
Second Case : Players with different priorities, $\Sigma \neq \{N\}$.

• Using the preceding results, the situation for players in a given priority layer can be easily established.

Proposition

If a graph (N, E) preserves the (ω, Σ) -convexity, given a priority k, the set of players of priority k corresponds to a collection of disconnected star/complete subgraphs.

Inside priority layers

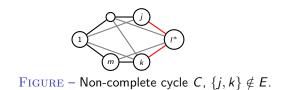


• Links between layers?

The previous counter-examples have to be refined and supplementary conditions are required.

Inheritance of weighted average convexity

We get a similar counterexample for non-complete cycles but only if $p(l^*) = p(V(C))$.



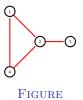
Taking
$$S = \{j, l^*, k\}$$
 and $T = V(C)$, we get

$$\sum_{i \in S} \omega_i^T (v^G(S) - v^G(S \setminus \{i\})) = \omega_j^T + 2\omega_{l^*}^T + \omega_k^T$$

$$> \omega_j^T + \omega_{l^*}^T + \omega_k^T =$$

$$\sum_{i \in S} \omega_i^T (v^G(T) - v^G(T \setminus \{i\})).$$

Inheritance of weighted average convexity



The previous example on the 3pan is now valid only if

$$p(2) = p(3) = p(4) \ge p(1),$$

 $p(2) > p(4) > \max(p(1), p(3)).$

 We established 2 supplementary counter-examples for other priority distributions.

or

• We get a very precise outline if the communication graph is cycle-free.

Lemma

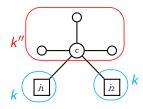
Let G = (N, E) be a **cycle-free** graph preserving (ω, Σ) -convexity. Let $k \le k' < k''$ be priority levels. Let C_1 (resp. C_2) be a component of G_k (resp. $G_{k'}$) linked to a component C of $G_{k''}$. Then the following statements are satisfied :

- C and C_1 are stars (possibly of size 1 or 2).
- **2** C_2 is a singleton.
- Solution C_2 is linked to C only at its center c.
- \bigcirc C₁ is linked to C only at its center c by a unique edge.

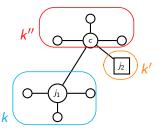
So C_2 cannot be linked to connected components of a lower layer. Moreover, if k = k', then

- C_1 is a singleton.
- Q C₁ cannot be linked to connected components of a lower layer.

Inheritance of weighted average convexity



(a) If k = k' then C_1 and C_2 are singletons.



(b) k < k', C_2 is a singleton.

Iñarra, E. and Usategui, J. (1993).
The shapley value and average convex games.
International Journal of Game Theory, 22 :13 – 29.

Kalai, E. and Samet, D. (1987).
 On weighted shapley values.
 International Journal of Game Theory, 16 :205–222.

Shapley, L. S. (1953a).
 Additive and Non-Additive Set Functions.
 PhD thesis, Princeton.

Shapley, L. S. (1953b).
 A value for *n*-person games.
 In *Contributions to the Theory of Games (AM-28), Volume II*, pages 307–318. Princeton University Press.

Slikker, M. (1998).
 Average Convexity in Communication Situations.
 Discussion Paper 1998-12, Tilburg University, Center for Economic Research.

van den Nouweland, A. and Borm, P. (1991). On the convexity of communication games. International Journal of Game Theory, 19(4) :421–30.