# Sampling techniques for the approximation of solutions for TU games

### Alejandro Saavedra-Nieves

(based on joint works with E. Algaba, B. Casas-Méndez, M. G. Fiestras-Janeiro, I. García-Jurado and P. Saavedra-Nieves)



Saint-Étienne, 15th April 2022

### Game theory: mathematical theory of interactive decision problems

A TU-game is a pair (N, v):

- N is the set of players and,
- $v: 2^N \longrightarrow \mathbb{R}$  is the characteristic function with  $v(\emptyset) = 0$ .

A main goal: definition and analysis of rules to allocate v(N)

- Point-valued solutions: the Shapley value, the Banzhaf-value, the Owen value, the Banzhaf-Owen value...
- Set-valued solutions: the imputation set, the core,...

#### Their exact computation is a difficult task for large sets of players!

# The Galician milk conflict

After the suppression of the European milk quotas in March 2015...

| Year | Jan.  | Feb.  | Mar.  | April | May   | June  | July  | Aug.  | Sept. | Oct.  | Nov.  | Dec.  |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 2013 | 32.65 | 32.66 | 32.76 | 32.84 | 33.06 | 33.03 | 34.44 | 34.86 | 35.59 | 38.57 | 38.93 | 39.17 |
| 2014 | 39.24 | 38.90 | 38.65 | 36.05 | 35.61 | 35.37 | 33.72 | 33.73 | 33.64 | 32.24 | 32.10 | 31.95 |
| 2015 | 30.52 | 30.60 | 30.30 | 28.80 | 28.40 | 27.90 | 27.60 | 27.70 | 28.30 | 28.70 | 28.70 | 28.80 |

Table: Averaged prices of the milk in Galicia (in euros per 100 litres) in the period 2013-2015.

#### How to increase the price of milk?



#### A low production scenario

- Reducing the milk production in Galicia?
- If we know a maximum production per municipality, how this reduction affect each of the 190 involved?
- We build a new system of quotas for councils.

\*Data source: Consellería de Medio Rural da Xunta de Galicia.

# The Spanish hotel industry



#### The hotel industry in Spain\*

- The hotel industry generated 12% of GDP.
- ▶ 83.7 million annual travellers.
- Spain was one the World's favourite destinations in 2019.

#### The crisis of the hotel industry

- After corona crisis, reservations collapse.
- Join resources minimizes the impact of crisis on the economy.
- The UN World Tourism Organization seeks a more efficient tourism.



\*Data source: United Nations World Tourism Organization (UNWTO, https://www.unwto.org/).



### The Zerkani network



- Ranking the members of the Zerkani network, responsible for the attacks in Paris (2015) and Brussels (2016).
- It contains 47 members.
- Hamers et al. (2019) use the Shapley value.

Hamers, H., Husslage, B., Lindelauf, R. (2019). Analysing ISIS Zerkani Network using the Shapley Value. Handbook of the Shapley Value, pp. 463-481.

### Game theory: mathematical theory of interactive decision problems

A TU-game is a pair (N, v):

- N is the set of players and,
- $v: 2^N \longrightarrow \mathbb{R}$  is the characteristic function with  $v(\emptyset) = 0$ .

A main goal: definition and analysis of rules to allocate v(N)

- Point-valued solutions: the Shapley value, the Banzhaf-value, the Owen value, the Banzhaf-Owen value...
- Set-valued solutions: the imputation set, the core,...

#### Sampling techniques are considered as a solution!

# Table of contents

### Estimation of coalitional values.

- Estimation of the Shapley value based on sampling
- Estimation of the Banzhaf value based on sampling
- Estimation of coalitional values with a priori unions.
  - Estimation of the Owen value based on sampling
  - Estimation of the Banzhaf-Owen value based on sampling
- Estimation of solutions for games with externalities.
  - Estimation of related TU-games based on sampling
  - Estimation of specific solutions for games with externalities
- Reconstruction of set-valued solutions.
  - Reconstruction of the core for a TU-game based on sampling
  - Estimation of the core center for a TU-game

# The Shapley value

The Shapley value (Shapley, 1953) for (N, v), for every  $i \in N$ , is

$$Sh_i(N, v) = \frac{1}{|\Pi(N)|} \sum_{\sigma \in \Pi(N)} (v(P_i^{\sigma} \cup \{i\}) - v(P_i^{\sigma})),$$

being  $\Pi(N)$  the set of all orders of N and  $P_i^{\sigma} = \{j \in N : \sigma(j) < \sigma(i)\}$  for any  $\sigma \in \Pi(N)$ .

Shapley, L. S. (1953). A value for n-person games. In: Kuhn, H. W. and Tucker, A. W. (Eds.), Contributions to the Theory of Games II, Princeton University Press, Princeton, NJ, 307-317.

### A procedure based on simple random sampling with replacement

**(**) We generate a sample with replacement  $S = \{\sigma_1, \ldots, \sigma_\ell\}$  of  $\ell$  elements in  $\Pi(N)$ .

2 For each 
$$\sigma \in S$$
,  $x(\sigma)_i = v(P_i^{\sigma} \cup \{i\}) - v(P_i^{\sigma})$ , for all  $i \in N$ .

3

$$\hat{Sh}_i = \frac{1}{\ell} \sum_{\sigma \in S} x(\sigma)_i$$
, for all  $i \in N$ .  
estimator

Castro, J., Gómez, D., and Tejada, J. (2009). Polynomial calculation of the Shapley value based on sampling. Computers & Operations Research, 36(5), 1726-1730.

Unbiased

# Analysis of the error

### A confidence interval for the Shapley value

 $\mathbb{P}(|\hat{S}h_i - Sh_i| \le \varepsilon) \ge 1 - \alpha$ , with  $\varepsilon > 0$  and  $\alpha \in (0, 1]$ .

### What is the required sample size?

Using Chebyshev's inequality

$$\ell \geq \frac{\theta^2}{\alpha \varepsilon^2},$$

being  $\theta^2$  the variance of  $x(\sigma)_i$ .

Using Hoeffding's inequality

$$\ell \geq rac{\ln(2/lpha)w_i^2}{2arepsilon^2},$$

being  $w_i$  the range of  $x(\sigma)_i$ .

Thus, by Popoviciu's inequality,
$$\ell \geq \min\left\{\frac{\ln(2/\alpha)}{2\varepsilon^2}, \frac{1}{4\alpha\varepsilon^2}\right\} w_i^2.$$

For  $\alpha \leq$  0.23, we use Hoeffding's inequality.

Maleki, S. (2015). Addressing the computational issues of the Shapley value with applications in the smart grid. PhD Thesis, Southampton University, Southampton.

# Table of contents

### Estimation of coalitional values.

- Estimation of the Shapley value based on sampling
- Estimation of the Banzhaf value based on sampling
- Estimation of coalitional values with a priori unions.
  - Estimation of the Owen value based on sampling
  - Estimation of the Banzhaf-Owen value based on sampling
- Estimation of solutions for games with externalities.
  - Estimation of related TU-games based on sampling
  - Estimation of specific solutions for games with externalities
- Reconstruction of set-valued solutions.
  - Reconstruction of the core for a TU-game based on sampling
  - Estimation of the core center for a TU-game

### The Banzhaf value

The Banzhaf value (Banzhaf, 1964) for (N, v), for every  $i \in N$ , is

$$Bz_i(N, v) = \frac{1}{2^{n-1}} \sum_{S \subseteq N \setminus \{i\}} (v(S \cup \{i\}) - v(S)).$$



Banzhaf, J. F. (1964). Weighted voting doesn't work: A mathematical analysis. Rutgers L. Rev., 19, 317.

### A procedure based on simple random sampling with replacement

Bachrach, Y., Markakis, E., Resnick, E., Procaccia, A. D., Rosenschein, J. S., Saberi, A. (2010). Approximating power indices: theoretical and empirical analysis. Autonomous Agents and Multi-Agent Systems, 20(2), 105-122.

**()** Fixed 
$$i \in N$$
, we obtain a sample  $S = \{S_1, \ldots, S_\ell\}$  of *S* coalitions in  $N \setminus \{i\}$ .

For each 
$$S \in S$$
, we do  $x(S)_i = v(S \cup \{i\}) - v(S)$ .

3 The estimation of  $Bz_i$ , for all  $i \in N$ , is

 $\overline{Bz}_i = \frac{1}{\ell} \sum_{S \in S} x(S)_i.$ 

Unbiased and consistent estimator

# Analysis of the error

### A confidence interval for the Banzhaf value

 $\mathbb{P}(|\overline{Bz}_i - Bz_i| \le \varepsilon) \ge 1 - \alpha$ , with  $\varepsilon > 0$  and  $\alpha \in (0, 1]$ .

### What is the required sample size?

Using Chebyshev's inequality

$$\ell \geq \frac{\theta^2}{\alpha \varepsilon^2},$$

being  $\theta^2$  the variance of  $x(\sigma)_i$ .

Using Hoeffding's inequality

$$\ell \geq \frac{\ln(2/\alpha)w_i^2}{2\varepsilon^2},$$

being  $w_i$  the range of  $x(S)_i$ .

Thus, by Popoviciu's inequality, $\ell \geq \min\bigg\{\frac{ln(2/\alpha)}{2\varepsilon^2}, \frac{1}{4\alpha\varepsilon^2}\bigg\}w_i^2.$ 

For  $\alpha \leq$  0.23, we use Hoeffding's inequality.

Maleki, S. (2015). Addressing the computational issues of the Shapley value with applications in the smart grid. PhD Thesis, Southampton University, Southampton.

# An application: the Galician milk conflict

After the European milk quotas in March 2015...

| Year | Jan.  | Feb.  | Mar.  | April | May   | June  | July  | Aug.  | Sept. | Oct.  | Nov.  | Dec.  |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 2013 | 32.65 | 32.66 | 32.76 | 32.84 | 33.06 | 33.03 | 34.44 | 34.86 | 35.59 | 38.57 | 38.93 | 39.17 |
| 2014 | 39.24 | 38.90 | 38.65 | 36.05 | 35.61 | 35.37 | 33.72 | 33.73 | 33.64 | 32.24 | 32.10 | 31.95 |
| 2015 | 30.52 | 30.60 | 30.30 | 28.80 | 28.40 | 27.90 | 27.60 | 27.70 | 28.30 | 28.70 | 28.70 | 28.80 |

Table: Averaged prices of the milk in Galicia (in euros per 100 litres) in the period 2013-2015.

### How to increase the price of milk?



#### A low production scenario

- Reducing the milk production in Galicia?
- If we know a maximum production per municipality, how this reduction affect each of the 190 involved?
- We build a new system of quotas for councils.

\*Data source: Consellería de Medio Rural da Xunta de Galicia.

# A low milk production scenario



#### A new bankruptcy problem

- Set of agents: the 190 most representative councils.
- Estate: the tons of milk in 2014-2015 for Galicia reduces by *ρ*%, *ρ* ∈ (0, 100]
- Claims: the capabilities of milk production (individual production of the councils, March 2015).

\*Data source: Consellería de Medio Rural da Xunta de Galicia.

Computing the random arrival rule is a difficult task!

#### 190! permutations to be evaluated

Saavedra-Nieves, A., Saavedra-Nieves, P. (2020). On systems of quotas from bankruptcy perspective: the sampling estimation of the random arrival rule. European Journal of Operational Research, 285(2), 655-669.

## A low milk production scenario: a case study



#### What about variability?

- We approximate the RA-rule for the most representative councils in Galicia.
- We obtain 100 estimations and we do some basic statistics.
- Differences in the results seem bearable.

#### Top 10 of councils with the largest milk production for Galicia

| Council | A Pastoriza | Lalín    | Castro de Rei | Santa Comba | Mazaricos | Chantada | Cospeito | Sarria   | Silleda  | Arzúa    |
|---------|-------------|----------|---------------|-------------|-----------|----------|----------|----------|----------|----------|
| Maximum | 52499.22    | 49633.35 | 43188.07      | 40002.56    | 36723.09  | 32731.26 | 32668.26 | 32068.42 | 31319.75 | 30539.21 |
| Average | 52472.49    | 49593.97 | 43161.96      | 39973.33    | 36696.91  | 32708.51 | 32645.75 | 32050.23 | 31300.44 | 30519.81 |
| Minimum | 52425.39    | 49561.72 | 43135.33      | 39942.24    | 36668.44  | 32681.45 | 32626.93 | 32030.53 | 31281.85 | 30502.95 |

**Table:** Summary of 100 estimations of the milk quotas for the councils with  $\rho = 40\%$ .

# Table of contents

### Estimation of coalitional values.

- Estimation of the Shapley value based on sampling
- Estimation of the Banzhaf value based on sampling

### Estimation of coalitional values with a priori unions.

- Estimation of the Owen value based on sampling
- Estimation of the Banzhaf-Owen value based on sampling
- Estimation of solutions for games with externalities.
  - Estimation of related TU-games based on sampling
  - Estimation of specific solutions for games with externalities
- Reconstruction of set-valued solutions.
  - Reconstruction of the core for a TU-game based on sampling
  - Estimation of the core center for a TU-game

### The Owen value

Let (N, v) be a TU-game and  $P = \{P_1, \ldots, P_m\}$  is a partition of N.

The Owen value (Owen, 1977) for (N, v, P), for every  $i \in N$ , is

$$O_i(N, v, P) = \frac{1}{|\Pi_P(N)|} \sum_{\sigma \in \Pi_P(N)} (v(P_i^{\sigma} \cup \{i\}) - v(P_i^{\sigma})),$$

being  $\Pi_P(N)$  the set of all compatible orders of N with P and  $P_i^{\sigma} = \{j \in N : \sigma(j) < \sigma(i)\}$  for any  $\sigma \in \Pi_P(N)$ .

•  $\sigma \in \Pi_P(N)$  compatible with P:

 $\forall i, j \in T \in P, \ \forall k \in N, \ \sigma(i) < \sigma(k) < \sigma(j) \Rightarrow k \in T.$ 

It is a variation of the Shapley value (Shapley, 1953).

Shapley, L. S. (1953). A value for n-person games. In: Kuhn, H. W. and Tucker, A. W. (Eds.), Contributions to the Theory of Games II, Princeton University Press, Princeton, NJ, 307-317.

Owen, G. (1977). Values of games with a priori unions. In R. Henn and O. Moeschlin (Eds.), Mathematical economics and game theory (pp. 76–88). Springer.

# Estimating the Owen value

Saavedra-Nieves, A., García-Jurado, I., Fiestras-Janeiro, M. G. (2018). Estimation of the Owen value based on sampling. In The Mathematics of the Uncertain (pp. 347-356). Springer, Cham.

### A procedure based on simple random sampling with replacement

- **(**) We generate a sample with replacement  $S = \{\sigma_1, \ldots, \sigma_\ell\}$  of  $\ell$  elements in  $\Pi_P(N)$ .
- 2 For each  $\sigma \in S$ ,  $x(\sigma)_i = v(P_i^{\sigma} \cup \{i\}) v(P_i^{\sigma})$ , for all  $i \in N$ .
  - The estimation of  $O_i$  is  $\hat{O}_i = \frac{1}{\ell} \sum_{\sigma \in S} x(\sigma)_i$ , for all  $i \in N$ . Unbiased and consistent estimator

### A confidence interval for the Owen value

$$\mathbb{P}(|\hat{O}_i - O_i| \le \varepsilon) \ge 1 - \alpha$$
, with  $\varepsilon > 0$  and  $\alpha \in (0, 1]$ .

Popoviciu's inequality:

$$\ell \geq \min\left\{\frac{\ln(2/\alpha)}{2\varepsilon^2}, \frac{1}{4\alpha\varepsilon^2}\right\}w_i^2.$$

# Table of contents

### Estimation of coalitional values.

- Estimation of the Shapley value based on sampling
- Estimation of the Banzhaf value based on sampling

### Estimation of coalitional values with a priori unions.

- Estimation of the Owen value based on sampling
- Estimation of the Banzhaf-Owen value based on sampling
- Estimation of solutions for games with externalities.
  - Estimation of related TU-games based on sampling
  - Estimation of specific solutions
- Reconstruction of set-valued solutions.
  - Reconstruction of the core for a TU-game based on sampling
  - Estimation of the core center for a TU-game

The Banzhaf-Owen value (Owen, 1982) for (N, v, P), for every  $i \in N$ , is

$$BzO_{i}(N, v, P) = \sum_{R \subseteq P \setminus P_{(i)}} \frac{1}{2^{m-1}} \sum_{S \subseteq P_{(i)} \setminus \{i\}} \frac{1}{2^{p_{i}-1}} \left( v(\bigcup_{P_{l} \in R} P_{l} \cup S \cup \{i\}) - v(\bigcup_{P_{l} \in R} P_{l} \cup S) \right),$$

where  $i \in P_{(i)} \in P$  and with  $p_i = |P_{(i)}|$ .

► For 
$$i \in N$$
,  $T \subseteq N \setminus \{i\}$  is *compatible with*  $P$  for  $i$ :  

$$T = \bigcup_{P_i \in R} P_i \cup S \text{ for } R \subseteq P \setminus P_{(i)} \text{ and } S \subseteq P_{(i)} \setminus \{i\}.$$

- It is a variation of the Banzhaf value (Banzhaf, 1964).
- Banzhaf, J. F. (1964). Weighted voting doesn't work: A mathematical analysis. Rutgers L. Rev., 19, 317.
- Owen, G. (1982). Modification of the Banzhaf-Coleman index for games with a priori unions. In M. J. Holler (Ed.), Power, voting, and voting power (pp. 232–238). Physica-Verlag HD.

### Estimating the Banzhaf-Owen value

Saavedra-Nieves, A., Fiestras-Janeiro, M. G. (2021). Sampling methods to estimate the Banzhaf–Owen value. Annals of Operations Research, 301(1), 199-223.

Let (N, v, P) be a game with  $P = \{P_1, \ldots, P_m\}$ .

- We take  $N^* = \{k : P_k \in P \setminus P_{(i)}\} \cup \{j : j \in P_{(i)}\}.$
- ► Each  $T \subseteq N^*$  is given by  $T = \bigcup_{P_i \in R} P_i \cup S$  with  $R \subseteq P \setminus P_{(i)}$  and  $S \subseteq P_{(i)}$ .

A procedure based on simple random sampling without replacement

**(**) We generate a sample without replacement  $\mathcal{T} = \{T_1, \ldots, T_\ell\}$  of  $\ell$  coalitions in  $N^* \setminus \{i\}$ .

For each 
$$T_j \in \mathcal{T}$$
,

$$x(R_j, S_j)_i = v(\underset{P_l \in R_j}{\cup} P_l \cup S_j \cup \{i\}) - v(\underset{P_l \in R_j}{\cup} P_l \cup S_j),$$

being  $R_j \subseteq P \setminus P_{(i)}$  and  $S_j \subseteq P_{(i)} \setminus \{i\}$  such that  $T_j = \{k : P_k \in R_j\} \cup S_j$ .

The estimation of 
$$BzO_i$$
 is  $\overline{BzO}_i = \frac{1}{\ell} \sum_{j=1}^{\ell} x(R_j, S_j)_i$ , for all  $i \in N$ .

#### Unbiased and consistent estimator

A. Saavedra-Nieves (USC)

# Analysis of the error

### A confidence interval for the Banzhaf-Owen value

$$\mathbb{P}\big(|\overline{\textit{BzO}}_i - \textit{BzO}_i| \le \varepsilon\big) \ge 1 - \alpha, \text{ with } \varepsilon > 0 \text{ and } \alpha \in (0, 1].$$

### What is the required sample size?

No replacement implies the dependence of the sampled units.

Using Chebyshev's inequality

$$\ell \geq \frac{\theta^2 2^{m-1} 2^{p_i-1}}{\alpha \varepsilon^2 2^{m-1} 2^{p_i-1} + \theta^2},$$

being  $\theta^2$  the variance of  $x(R, S)_i$ .

Using Serfling's inequality

$$\ell \geq \min\left\{\frac{\ln(2/\alpha)w_i^2(2^{m-1}2^{p_i-1}+1)}{\ln(2/\alpha)w_i^2+2\varepsilon^22^{m-1}2^{p_i-1}}, 2^{m-1}2^{p_i-1}\right\},\$$

being  $w_i$  the range of  $x(R, S)_i$ .

Thus, by Popoviciu's inequality,
$$\ell \geq \min \bigg\{ \frac{w_i^2 2^{m-1} 2^{p_i-1}}{4\alpha \varepsilon^2 2^{m-1} 2^{p_i-1} + w_i^2}, \frac{\ln(2/\alpha) w_i^2 (2^{m-1} 2^{p_i-1} + 1)}{\ln(2/\alpha) w_i^2 + 2\varepsilon^2 2^{m-1} 2^{p_i-1}} \bigg\}.$$

### The Zerkani network



- We rank the members of the Zerkani network, responsible for the attacks in Paris (2015) and Brussels (2016).
- It contains 47 members.
- We consider TU-games with a priori unions.

- E. Algaba, A. Prieto, A. Saavedra-Nieves, H. Hamers (2022). Analyzing the Zerkani network with the Owen value. Collective Decisions Interdisciplinary Perspectives for the 21st Century. Studies in Choice and Welfare. *To appear*.
  - E. Algaba, A. Prieto, A. Saavedra-Nieves (2022). Ranking the Zerkani network by sampling methods based on the Banzhaf value. Submitted to Applied Mathematics & Computation.

The effectiveness of a coalition

$$f(S, \mathcal{I}, \mathcal{R}) = \begin{cases} \left(\sum_{i \in S} w_i\right) \cdot \max_{ij \in E_S} k_{ij}, & \text{if } |S| > 1, \\ w_S, & \text{if } |S| = 1. \end{cases}$$

- $w_i$ , individual weights for all  $i \in N$ .
- $k_{ij}$ , weight of the link ij, with  $i, j \in N$ .

 $\Sigma_S$  denotes the set of connected subcoalitions of S in the graph.

The weighted connectivity TU-game and the additive weighted connectivity game

$$v^{\text{wconn}}(S) = \begin{cases} f(S, \mathcal{I}, \mathcal{R}), & \text{if } S \text{ connected}, \\ \max_{T \in \sum_{S}} v^{\text{wconn}}(T), & \text{if } S \text{ disconnected}. \end{cases}$$
$$v^{\text{awconn}}(S) = \begin{cases} f(S, \mathcal{I}, \mathcal{R}), & \text{if } S \text{ connected}, \\ \sum_{T \in \sum_{S}} v^{\text{awconn}}(T), & \text{if } S \text{ disconnected}. \end{cases}$$



Husslage, B., Borm, P., Burg, T., Hamers, H., and Lindelauf, R. (2015). Ranking terrorists in networks: A sensitivity analysis of al qaeda's 9/11 attack. Social Networks, 42, 1–7.

Lindelauf, R., Hamers, H. J., and Husslage, B. (2013). Cooperative game theoretic centrality analysis of terrorist networks: The cases of jemaah islamiyah and al qaeda. European Journal of Operational Research, 229(1), 230–238

A. Saavedra-Nieves (USC)

#### Rankings of terrorists in Zerkani network

|                  | Ranking | g R <sub>wconn</sub> |        | Ranking Rawconn  |        |                  |        |  |  |
|------------------|---------|----------------------|--------|------------------|--------|------------------|--------|--|--|
| Terrorist        | Sh      | Terrorist            | ō      | Terrorist        | Sh     | Terrorist        | ō      |  |  |
| Ab. Abaaoud      | 17.108  | Khalid Zerkani       | 39.242 | Mohamed Belkaid  | 13.987 | Mohamed Belkaid  | 28.460 |  |  |
| Khalid Zerkani   | 15.026  | Ab. Abaaoud          | 36.129 | Khalid Zerkani   | 12.332 | Khalid Zerkani   | 27.677 |  |  |
| Salah Abdeslam   | 14.741  | Mohamed Belkaid      | 29.236 | Ab. Abaaoud      | 11.850 | Mohamed Bakkali  | 27.168 |  |  |
| Mohamed Belkaid  | 14.249  | Mohamed Bakkali      | 27.845 | Salah Abdeslam   | 11.453 | Ab. Abaaoud      | 26.157 |  |  |
| Najim Laachraoui | 7.918   | Salah Abdeslam       | 27.042 | Fabien Clain     | 8.295  | Salah Abdeslam   | 22.439 |  |  |
| Mohamed Bakkali  | 7.356   | Fabien Clain         | 13.661 | Mohamed Bakkali  | 7.625  | Fabien Clain     | 16.404 |  |  |
| Fabien Clain     | 5.884   | Reda Kriket          | 11.642 | Najim Laachraoui | 7.549  | Reda Kriket      | 11.395 |  |  |
| Reda Kriket      | 3.696   | Ahmed Dahmani        | 10.754 | Reda Kriket      | 4.923  | Ahmed Dahmani    | 6.142  |  |  |
| Ahmed Dahmani    | 3.369   | Khaled Ledjeradi     | 4.702  | Mohamed Abrini   | 2.996  | Miloud F.        | 6.093  |  |  |
| Mohamed Abrini   | 2.917   | Miloud F.            | 4.209  | Miloud F.        | 2.827  | Khaled Ledjeradi | 5.271  |  |  |
| Terrorist        | Bz      | Terrorist            | BzO    | Terrorist        | Bz     | Terrorist        | BzO    |  |  |
| Ab. Abaaoud      | 38.372  | Khalid Zerkani       | 39.328 | Mohamed Belkaid  | 31.333 | Mohamed Belkaid  | 32.274 |  |  |
| Salah Abdeslam   | 34.993  | Ab. Abaaoud          | 35.702 | Salah Abdeslam   | 26.114 | Khalid Zerkani   | 27.854 |  |  |
| Khalid Zerkani   | 33.992  | Salah Abdeslam       | 33.639 | Khalid Zerkani   | 25.752 | Salah Abdeslam   | 27.010 |  |  |
| Mohamed Belkaid  | 33.144  | Mohamed Belkaid      | 33.400 | Ab. Abaaoud      | 24.206 | Ab. Abaaoud      | 25.426 |  |  |
| Najim Laachraoui | 18.827  | Mohamed Bakkali      | 22.473 | Mohamed Bakkali  | 18.360 | Mohamed Bakkali  | 22.181 |  |  |
| Mohamed Bakkali  | 18.367  | Fabien Clain         | 12.298 | Najim Laachraoui | 17.381 | Fabien Clain     | 15.892 |  |  |
| Fabien Clain     | 11.903  | Ahmed Dahmani        | 9.900  | Fabien Clain     | 16.538 | Reda Kriket      | 10.830 |  |  |
| Reda Kriket      | 8.316   | Reda Kriket          | 9.166  | Reda Kriket      | 10.620 | Miloud F.        | 5.916  |  |  |
| Ahmed Dahmani    | 8.111   | Najim Laachraoui     | 4.740  | Mohamed Abrini   | 6.242  | Ahmed Dahmani    | 5.712  |  |  |
| Mohamed Abrini   | 6.924   | Mohamed Abrini       | 4.621  | Miloud F.        | 5.833  | Khaled Ledjeradi | 5.379  |  |  |

Rankings based on the estimations of the Shapley value, the Banzhaf value, the Owen value, and the Banzhaf-Owen value.

# Table of contents

### Estimation of coalitional values.

- Estimation of the Shapley value based on sampling
- Estimation of the Banzhaf value based on sampling
- Estimation of coalitional values with a priori unions.
  - Estimation of the Owen value based on sampling
  - Estimation of the Banzhaf-Owen value based on sampling
- Estimation of solutions for games with externalities.
  - Estimation of related TU-games based on sampling
  - Estimation of specific solutions for games with externali
- Reconstruction of set-valued solutions.
  - Reconstruction of the core for a TU-game based on sampling
  - Estimation of the core center for a TU-game

# The Spanish hotel industry



#### The hotel industry in Spain\*

- The hotel industry generated 12% of GDP.
- ▶ 83.7 million annual travellers.
- Spain was one the World's favourite destinations in 2019.

#### The crisis of the hotel industry

- After corona crisis, reservations collapse.
- Join resources minimizes the impact of crisis on the economy.
- The UN World Tourism Organization seeks a more efficient tourism.



\*Data source: United Nations World Tourism Organization (UNWTO, https://www.unwto.org/).



#### Data environment analysis (DEA)

The efficiency of a set of Decision Making Units (DMUs) is evaluated.

 $\begin{array}{ll} \textbf{MP} & \max & \eta_{i_0} \\ & \text{subject to} & \\ & -\sum_{i \in N} y_{ri}\lambda_i + y_{ri_0}\eta_{i_0} \leq 0, \ r = 1, \ldots, s \\ & \sum_{i \in N} x_{ji}\lambda_i \leq x_{ji_0}, \ j = 1, \ldots, m \\ & \lambda_i \geq 0, \ \forall i \in \{1, \ldots, n\} \\ & \eta_{i_0} \in \mathbb{R}. \end{array}$ 

Charnes, A., Cooper, W. W., and Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

Let  $N = \{1, ..., n\}$  be a system of DMUs. Each of them is characterized by:

- *m* inputs.  $x_{ki}$  is the amount of input *k*, with k = 1, ..., m, of DMU *i*, for every  $i \in N$ .
- ▶ *s* outputs.  $y_{ki}$  is the amount of output *k*, with k = 1, ..., s, produced by DMU *i*, for every  $i \in N$ .

This problem is known as a multi-agent DEA problem and denoted by (N; X; Y).

# A new approach of cooperation

- As a novelty, the overall efficiency of a merger of DMUs is influenced by the organization of the remainder of DMUs and their mergers.
- ► That is, the existence of coalition structure describing the affinities of N \ S influences into the relative efficiency of [i<sub>S</sub>].

Take  $P \in \Pi(N)$  a coalition structure for the players in *N*.

- We define the artificial DMUs  $[i_S]$ , for every  $S \in P$ .
- The new set of DMUs is given by  $N^P = \{[i_S] : S \in P\}$ .

►  $x_{[i_S]}$  and  $y_{[i_S]}$  are the inputs and outputs resulting from their aggregation. Thus, this *DEA problem* will be denoted by  $(N^P; X^P; Y^P)$ .

Kritikos, M. N. (2017). A full ranking methodology in data envelopment analysis based on a set of dummy decision making units. Expert Systems with Applications, 77, 211–225.

### On the cooperation of DMUs under externalities

A multi-agent DEA problem under externalities is denoted by (N; X; Y).

#### **DEA sum games**

Thrall, R. M., and Lucas, W. F. (1963). N-person games in partition function form. Naval Research Logistics Quarterly, 10(1), 281–298.

A DEA partition function form game (N; X; Y; e) (or simply, e) is defined as follows:

$$oldsymbol{e}(S;P) = egin{cases} rac{1}{\eta^*_{[i_S],P}}, & ext{if } \emptyset 
eq S \subseteq N, \ P \in \Pi(N \setminus S), \ 0, & ext{otherwise}, \end{cases}$$

being  $\eta^*_{[i_S],P}$  the optimal value of Problem MP to  $(N^{P \cup \lceil S \rceil}, X^{P \cup \lceil S \rceil}, Y^{P \cup \lceil S \rceil})$ , with  $P \cup \lceil S \rceil \in \Pi(N)$  having *S* as a block<sup>1</sup>, for DMU  $i_0 = [i_S]$ .

<sup>[</sup>S] means that S is an element of the partition.

### Ranking DMUs under externalities

- Task: ranking DMUs in multi-agent DEA problems with externalities.
- DMUs' efficiency is used as criterion.
- To this aim, values or solutions for TU games are used.

The Shapley value of (N, v)

$$Sh_i(N, v) = \sum_{T \subseteq N \setminus \{i\}} \frac{|T|! (|N| - |T| - 1)!}{|N|!} (v(T \cup \{i\}) - v(T)), \text{ for every } i \in N.$$

Solutions for a game with externalities e

- de Clippel and Serrano (2008):  $Sh(N, e_{min})$ .
- ► McQuillin (2009): *Sh*(*N*, *e*<sub>max</sub>).
- Albizuri et al. (2005):  $Sh(N, \bar{e})$ .
- Hu and Yang (2010):  $Sh(N,\overline{\overline{e}})$ .

# Ranking DMUs under externalities

Let *e* be a partition function form game. For every  $S \subseteq N$ ,

$$e_{\max}(S) = \max_{P \in \Pi(N \setminus S)} e(S; P)$$
 and  $e_{\min}(S) = \min_{P \in \Pi(N \setminus S)} e(S; P)$ .

The TU game  $(N, \overline{e})$  of Albizuri

$$ar{e}(S) = rac{1}{|\Pi(N\setminus S)|} \sum_{Q\in\Pi(N\setminus S)} e(S;Q), ext{ for each } S\subseteq N.$$

The TU game  $(N, \overline{e})$  of Hu & Yang

$$\overline{\overline{e}}(S) = rac{1}{|\Pi(N)|} \sum_{P \in \Pi(N)} e(S; P_{-S}), ext{ for each } S \subseteq N.$$



Albizuri, M. J., Arin, J., and Rubio, J. (2005). An axiom system for a value for games in partition function form. International Game Theory Review, 7(01), 63–72. Hu, C.-C., and Yang, Y.-Y. (2010). An axiomatic characterization of a value for games in partition function form. SERIEs, 1(4), 475–487.

# Estimating the TU game of Hu and Yang

The obtaining of the characteristic function of the TU game of Hu and Yang complicates for a "large" amount of players.

A procedure based on simple random sampling with replacement

Take  $S \subseteq N$ .

- **(**) We generate a sample with replacement  $S_{\mathcal{P}} = \{P_1, \ldots, P_\ell\}$  of  $\ell$  partitions of N.
- 2 For each  $P \in S_{\mathcal{P}}$ , we obtain

 $e(S; P_{-S}),$ 

being  $P_{-S}$  the partition induced by P for  $N \setminus S$ .

3 The estimation of  $\overline{\overline{e}}(S)$  is

$$\widehat{\widehat{e_{S}}} = \frac{1}{\ell} \sum_{P \in \mathcal{S}_{\mathcal{P}}} e(S; P_{-S}).$$

# Estimating the TU game of Hu and Yang

The obtaining of the characteristic function of the TU game of Hu and Yang complicates for a "large" amount of players.

A procedure based on simple random sampling with replacement

Take  $S \subseteq N$ .

- **(**) We generate a sample with replacement  $S_{\mathcal{P}} = \{P_1, \ldots, P_\ell\}$  of  $\ell$  partitions of N.
- 2 For each  $P \in S_{\mathcal{P}}$ , we obtain

$$e(S; P_{-S}),$$

being  $P_{-S}$  the partition induced by P for  $N \setminus S$ .

3 The estimation of  $\overline{\overline{e}}(S)$  is

$$\widehat{\widehat{e}_{S}} = \frac{1}{\ell} \sum_{P \in \mathcal{S}_{\mathcal{P}}} e(S; P_{-S}).$$

Unbiased and consistent estimator

# Estimating the TU game of Albizuri

The task of obtaining the TU game of Albizuri et al. is also complicated.

A procedure based on simple random sampling with replacement

Take  $S \subseteq N$ .

- We generate a sample with replacement S<sub>P</sub> = {P<sub>1</sub>,..., P<sub>ℓ<sub>S</sub></sub>} of ℓ<sub>S</sub> partitions of N \ S.
- 2 For each  $P \in S_{\mathcal{P}}$ , we obtain

being *P* a sampled partition for  $N \setminus S$ .

3 The estimation of  $\overline{e}(S)$  is

$$\widehat{e_{S}} = \frac{1}{\ell_{S}} \sum_{P \in S_{\mathcal{P}}} e(S; P).$$

# Estimating the TU game of Albizuri

The task of obtaining the TU game of Albizuri et al. is also complicated.

A procedure based on simple random sampling with replacement

Take  $S \subseteq N$ .

- We generate a sample with replacement S<sub>P</sub> = {P<sub>1</sub>,..., P<sub>ℓ<sub>S</sub></sub>} of ℓ<sub>S</sub> partitions of N \ S.
- 2 For each  $P \in S_{\mathcal{P}}$ , we obtain

e(S; P),

being *P* a sampled partition for  $N \setminus S$ .

3 The estimation of  $\overline{e}(S)$  is

$$\widehat{e_S} = \frac{1}{\ell_S} \sum_{P \in S_P} e(S; P).$$

Unbiased and consistent estimator

# Table of contents

### Estimation of coalitional values.

- Estimation of the Shapley value based on sampling
- Estimation of the Banzhaf value based on sampling
- Estimation of coalitional values with a priori unions.
  - Estimation of the Owen value based on sampling
  - Estimation of the Banzhaf-Owen value based on sampling
- Estimation of solutions for games with externalities.
  - Estimation of related TU-games based on sampling
  - Estimation of specific solutions for games with externalities
- Reconstruction of set-valued solutions.
  - Reconstruction of the core for a TU-game based on sampling
  - Estimation of the core center for a TU-game

# Estimating the Shapley value

The Shapley value of the estimated TU games are natural estimators.

The case of Hu and Yang

$$\widehat{\widehat{Sh}}_i = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! (|N| - |S| - 1)!}{|N|!} (\widehat{\widehat{e}}_{S \cup \{i\}} - \widehat{\widehat{e_S}}), \text{ for all } i \in N.$$

#### The case of Albizuri et al.

$$\widehat{Sh}_i = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! (|N| - |S| - 1)!}{|N|!} (\widehat{e}_{S \cup \{i\}} - \widehat{e_S}), \text{ for all } i \in N.$$

Both estimators are unbiased and consistent.

#### But we have no bounds of the error!

DMUs, the set of 17 autonomous communities and 2 autonomous cities.

Inputs, for measuring the hotel industry's potential in Spain.

- Number of hotels.
- Number of occupied bed places.
- Number of employees.

Outputs, as result of managing the existing resources.

- Number of hotel guests.
- Number of the overnight stays.
- Number of the occupied accommodations.

Data set extracted from the Instituto Nacional de Estadística (INE)

#### Task: rank the 17 regions and the 2 autonomous cities using DEA sum games.

• We measure the capability for increasing the overall efficiency in the event of a merger.



| Region                 |         | Exact ra | ankings | Estimated rankings |         |      |         |      |
|------------------------|---------|----------|---------|--------------------|---------|------|---------|------|
| Region                 | (CS)    | Rank     | (MQ)    | Rank               | (A)     | Rank | (HY)    | Rank |
| Andalucía              | 0.04017 | 14       | 0.05232 | 11                 | 0.04237 | 15   | 0.04133 | 14   |
| Aragón                 | 0.05117 | 7        | 0.05181 | 15                 | 0.05287 | 8    | 0.05202 | 8    |
| Principado de Asturias | 0.03417 | 17       | 0.05194 | 14                 | 0.03704 | 17   | 0.03606 | 17   |
| Illes Balears          | 0.10943 | 1        | 0.05596 | 1                  | 0.09270 | 1    | 0.09902 | 1    |
| Canarias               | 0.05665 | 6        | 0.05031 | 19                 | 0.05545 | 6    | 0.05620 | 6    |
| Cantabria              | 0.03790 | 16       | 0.05223 | 12                 | 0.04122 | 16   | 0.03985 | 16   |
| Castilla y León        | 0.04094 | 13       | 0.05131 | 17                 | 0.04371 | 13   | 0.04266 | 13   |
| Castilla - La Mancha   | 0.04737 | 9        | 0.05156 | 16                 | 0.04882 | 9    | 0.04791 | 9    |
| Cataluña               | 0.07229 | 4        | 0.05518 | 3                  | 0.07094 | 3    | 0.07228 | 3    |
| Comunitat Valenciana   | 0.07726 | 3        | 0.05389 | 4                  | 0.07076 | 4    | 0.07227 | 4    |
| Extremadura            | 0.03001 | 18       | 0.05205 | 13                 | 0.03341 | 18   | 0.03225 | 18   |
| Galicia                | 0.02533 | 19       | 0.05094 | 18                 | 0.02817 | 19   | 0.02707 | 19   |
| Comunidad de Madrid    | 0.10352 | 2        | 0.05537 | 2                  | 0.08920 | 2    | 0.09413 | 2    |
| Región de Murcia       | 0.04227 | 11       | 0.05243 | 9                  | 0.04697 | 11   | 0.04587 | 11   |
| Com. Foral de Navarra  | 0.04212 | 12       | 0.05234 | 10                 | 0.04543 | 12   | 0.04426 | 12   |
| País Vasco             | 0.05668 | 5        | 0.05262 | 6                  | 0.05802 | 5    | 0.05753 | 5    |
| La Rioja               | 0.04391 | 10       | 0.05245 | 8                  | 0.04718 | 10   | 0.04607 | 10   |
| Ceuta                  | 0.05090 | 8        | 0.05263 | 5                  | 0.05306 | 7    | 0.05214 | 7    |
| Melilla                | 0.03793 | 15       | 0.05261 | 7                  | 0.04271 | 14   | 0.04109 | 15   |

Table: Rankings under the approaches of (CS) and (MQ), and under the ones of (A) and of (HY) with sampling.



The effectiveness of a coalition

$$f(S, \mathcal{I}, \mathcal{R}) = \begin{cases} \left(\sum_{i \in S} w_i\right) \cdot \max_{ij \in E_S} k_{ij}, & \text{if } |S| > 1, \\ w_S, & \text{if } |S| = 1. \end{cases}$$

- $w_i$ , individual weights for all  $i \in N$ .
- $k_{ij}$ , weight of the link ij, with  $i, j \in N$ .

 $\Sigma_{\mathcal{S}}$  denotes the set of connected subcoalitions of  $\mathcal{S}$  in the graph.

A covert nwetwork game  $v_{G,f}(S; P)$  is defined as follows:

$$v_{G,f}(S; P) = \begin{cases} 1, & \text{if } \max_{\mathcal{T} \in \Sigma_S} f(\mathcal{T}, \mathcal{I}, \mathcal{R}) \geq \max_{\mathcal{T} \in \Sigma_{S'}} f(\mathcal{T}, \mathcal{I}, \mathcal{R}), \\ & \forall S' \in P, \text{ with } \emptyset \neq S \subseteq N, \ P \in \Pi(N \setminus S), \\ 0, & \text{otherwise}, \end{cases}$$

We identify the most effective coalitions by using f.

We rank the members of a covert network using solutions for games with externalities.

#### Rankings of hijackers involved in 9/11 attacks

|    | Shapley value (SH)  |         | Gen. Eg. Shapley val | ue (GES) | Solidarity value (S) |         | Banzhaf value (BZ)  |         |
|----|---------------------|---------|----------------------|----------|----------------------|---------|---------------------|---------|
|    | Hijacker            | Alloc.  | Hijacker             | Alloc.   | Hijacker             | Alloc.  | Hijacker            | Alloc.  |
| 1  | Salem Alhazmi       | 0.12290 | Salem Alhazmi        | 0.08735  | Salem Alhazmi        | 0.05957 | Salem Alhazmi       | 0.33510 |
| 2  | Khalid Al-Mihdhar   | 0.11923 | Khalid Al-Mihdhar    | 0.08551  | Khalid Al-Mihdhar    | 0.05923 | Khalid Al-Mihdhar   | 0.32247 |
| 3  | Ziad Jarrah         | 0.11258 | Ziad Jarrah          | 0.08226  | Ziad Jarrah          | 0.05856 | Ziad Jarrah         | 0.30589 |
| 4  | Mohamed Atta        | 0.10337 | Mohamed Atta         | 0.07762  | Mohamed Atta         | 0.05765 | Mohamed Atta        | 0.28439 |
| 5  | Hani Hanjour        | 0.09800 | Hani Hanjour         | 0.07499  | Hani Hanjour         | 0.05714 | Hani Hanjour        | 0.26511 |
| 6  | Ahmed Al-Haznawi    | 0.07050 | Ahmed Al-Haznawi     | 0.06141  | Ahmed Al-Haznawi     | 0.05441 | Majed Moged         | 0.19389 |
| 7  | Majed Moged         | 0.07017 | Majed Moged          | 0.06129  | Majed Moged          | 0.05436 | Ahmed Al-Haznawi    | 0.19310 |
| 8  | Marwan Al-Shehhi    | 0.05154 | Marwan Al-Shehhi     | 0.05211  | Marwan Al-Shehhi     | 0.05252 | Marwan Al-Shehhi    | 0.14298 |
| 9  | Hamza Alghamdi      | 0.04792 | Hamza Alghamdi       | 0.05030  | Hamza Alghamdi       | 0.05216 | Hamza Alghamdi      | 0.13330 |
| 10 | Nawaf Alhazmi       | 0.04179 | Nawaf Alhazmi        | 0.04723  | Nawaf Alhazmi        | 0.05155 | Nawaf Alhazmi       | 0.11959 |
| 11 | Saeed Alghamdi      | 0.03880 | Saeed Alghamdi       | 0.04586  | Saeed Alghamdi       | 0.05125 | Saeed Alghamdi      | 0.10737 |
| 12 | Fayez Ahmed         | 0.02810 | Fayez Ahmed          | 0.04053  | Fayez Ahmed          | 0.05020 | Fayez Ahmed         | 0.07893 |
| 13 | Mohand Alshehri     | 0.02360 | Mohand Alshehri      | 0.03830  | Mohand Alshehri      | 0.04976 | Mohand Alshehri     | 0.06639 |
| 14 | Ahmed Alnami        | 0.02251 | Ahmed Alnami         | 0.03780  | Ahmed Alnami         | 0.04965 | Ahmed Alnami        | 0.06381 |
| 15 | Abdul Aziz Al-Omari | 0.01839 | Abdul Aziz Al-Omari  | 0.03572  | Abdul Aziz Al-Omari  | 0.04924 | Abdul Aziz Al-Omari | 0.05420 |
| 16 | Satam Sugami        | 0.01261 | Satam Sugami         | 0.03287  | Satam Sugami         | 0.04868 | Satam Sugami        | 0.03651 |
| 17 | Ahmed Alghamdi      | 0.00944 | Ahmed Alghamdi       | 0.03129  | Ahmed Alghamdi       | 0.04837 | Ahmed Alghamdi      | 0.02716 |
| 18 | Waleed Alshehri     | 0.00428 | Waleed Alshehri      | 0.02878  | Waleed Alshehri      | 0.04786 | Waleed Alshehri     | 0.01268 |
| 19 | Wail Alshehri       | 0.00428 | Wail Alshehri        | 0.02878  | Wail Alshehri        | 0.04786 | Wail Alshehri       | 0.01268 |

Table: Rankings based on the estimation of the TU-games of Albizuri.

Rankings based on the TU-games of Hu and Yang, de Clippel and Serrano, and McQuillin.

Saavedra-Nieves, A., Casas-Méndez, B. (2022). On the centrality analysis of covert networks using games with externalities. Submitted to European Journal of Operational Research.

# Table of contents

### Estimation of coalitional values.

- Estimation of the Shapley value based on sampling
- Estimation of the Banzhaf value based on sampling
- Estimation of coalitional values with a priori unions.
  - Estimation of the Owen value based on sampling
  - Estimation of the Banzhaf-Owen value based on sampling
- Estimation of solutions for games with externalities.
  - Estimation of related TU-games based on sampling
  - Estimation of specific solutions for games with externali
- Reconstruction of set-valued solutions.
  - Reconstruction of the core for a TU-game based on sampling
  - Estimation of the core center for a TU-game

The core

$$C(N, v) = \left\{ x \in \mathbb{R}^{|N|} : \sum_{i \in N} x_i = v(N) \text{ and } \sum_{i \in T} x_i \ge v(T), \text{ for each } T \subset N \right\}.$$

$$(0.2, 9.0)$$

$$(0.2, 9.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$

$$(0.9, 2.0)$$



Saavedra-Nieves, A., Saavedra-Nieves, P. (2021). On core reconstruction for TU games from nonparametric set estimation techniques. *Preprint*.

#### The core

$$\mathcal{C}(N, \nu) = \bigg\{ x \in \mathbb{R}^{|N|} \ : \ \sum_{i \in N} x_i = \nu(N) \text{ and } \sum_{i \in T} x_i \geq \nu(T), \text{ for each } T \subset N \bigg\}.$$

#### **Related literature**

- Avis and Fukuda (1992) computes the core vertices in time O(h<sup>2</sup> nν), h being the number of inequalities and ν, the number of vertices.
- The exact computation of the core vertices reaches exponential time complexity.
- Derks and Kuipers (2002) upper-bounded the number of vertices by n!.

### Set estimation for reconstructing the core in polynomial time, $\hat{C}(N, v)$ .

- Avis, D., Fukuda, K. (1992). A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete & Computational Geometry, 8(3), 295–313.
  - Derks, J., Kuipers, J. (2002). On the number of extreme points of the core of a transferable utility game. In Chapters in game theory (pp. 83–97). Springer.

### Core reconstruction

Estimation of a set (or its characteristic features such as its vertices or its volume) from a random sample of points.



# Core reconstruction: an algorithm

Take (N, v) a TU-game.

A procedure based on sampling for reconstructing the core C(N, v)

- The set to be estimated is C(N, v), the set of stable allocations for N.
- 2 C(N, v) is considered as the support of a uniform distribution.
- 3 A uniform sample of size *m* supported on C(N, v),  $\mathcal{X}_m$ , has to be generated.
- Ocompute the convex hull of  $\mathcal{X}_m$ ,  $H(\mathcal{X}_m)$ , as the reconstruction of C(N, v),  $\hat{C}(N, v)$ .

Note: If (N, v) is convex, we will use a sample of vectors of marginal contributions (vertices) in (3).

#### Some comments

- This algorithm allows to approximate the core in polynomial time.
- The resulting core estimator is mathematically consistent (Dümbgen and Walther, 1996)

Dümbgen, L., Walther, G. (1996). Rates of convergence for random approximations of convex sets. Advances in applied probability, 28(2), 384–393.

# Table of contents

### Estimation of coalitional values.

- Estimation of the Shapley value based on sampling
- Estimation of the Banzhaf value based on sampling
- Estimation of coalitional values with a priori unions.
  - Estimation of the Owen value based on sampling
  - Estimation of the Banzhaf-Owen value based on sampling
- Estimation of solutions for games with externalities.
  - Estimation of related TU-games based on sampling
  - Estimation of specific solutions for games with externali

### Reconstruction of set-valued solutions.

- Reconstruction of the core for a TU-game based on sampling
- Estimation of the core center for a TU-game

# A geometrical application: estimating the core-center

Take (N, v) a TU-game.

A. Saavedra-Nieves (USC)

- The core-center of (N, v), cc(v), is the barycenter of the convex and compact polyhedron determined by C(N, v).
- The natural estimator  $\hat{c}_{CH}(v)$  of this allocation rule emerges by considering the centroid of the core reconstruction.



- We illustrate the performance of this proposal os 3 and 4 player situations.
- However, it can be applied in a general setting.
- The main limitation is imposed by the characteristic of the used computers.
- We have been able to apply it until 16 players.
- R software has specific libraries for this purpose.

# **Concluding remarks**

- We have reviewed different proposals based on sampling for the approximation of TU game solutions.
- These allow us to provide solutions to problems where there is no alternative in polynomial time for their computation.
- The proposed methodologies are sufficiently robust to guarantee the quality of the estimates obtained.
- The main computational difficulties are in the handling of the information when the number of players is very large.
- Most of the implemented methodologies are available in R software, although not specifically for this context.
- The characteristics of the machine to be used determine the computational speed.

# Sampling techniques for the approximation of solutions for TU games

### Alejandro Saavedra-Nieves

(based on joint works with E. Algaba, B. Casas-Méndez, M. G. Fiestras-Janeiro, I. García-Jurado and P. Saavedra-Nieves)



Saint-Étienne, 15th April 2022