Sharing the Cost of a Gas Distribution Network.

David LOWING

Ph.D. Student - GATE, Université de Lyon Saint-Etienne, France Gaz Réseau Distribution France 1. The model;

- Consumers;
- Demands;
- Network;
- Cost function.
- 2. Cost sharing rules;
 - 3 rules;
 - Axiomatic characterization.
- 3. Multi-choice cooperative games.
 - Values and Rules;
 - Core and Rules.

The Model

The model: (N, P)

 $-N = \{a, b, \dots, n\}$ finite set of **consumers**.

-Consumers are linked to a (unique) source S via **pipelines**.

- -Consumers and pipelines form a ${\bf gas}$
- distribution network, represented by a directed tree P.

-Each consumer $i \in N$ has an **maximal demand** $q_i \in \mathbb{N}$ and is endowed with the discrete set of **available demands**

$$M_i = \{0, 1, 2, \dots, q_i\}.$$

-The profile of maximal demands is denoted by $q = (q_a, \ldots, q_n)$.

<u>NB:</u> $1 \le q_i \le q_n$, for all $i \in N$.

Since the network operator must be able to meet any maximal demand, each pipeline must be large enough to meet any maximal downstream demand.

-The **Cost function** can evaluate the cost of any pipeline of any size

$$C: N \times \{1, \ldots, q_n\} \to \mathbb{R}_+,$$

-The cost of the *i*-th pipeline when sized to meet a demand of j is given by

$$C(i,j) \in \mathbb{R}_+.$$

<u>NB:</u> C(i,0) = 0 and $C(i,j) \leq C(i,j+1)$, for all $j < q_n$.

An incremental cost A_{ij}^C , $i \in N$, $j \leq \overline{q}_i$, is defined as

$$A_{ij}^C = C(i, j) - C(i, j - 1).$$

С	a	b	с	d	e
1	5	2	7	4	5
2	10	8	13	9	11
3	15	12	16	13	15
4	20	15	22	17	20

<u>NB:</u> An incremental cost A_{ij}^C can be interpreted as the cost of upgrading the pipeline *i* from a size j - 1 to a size *j*.

The **total cost** is computed as the sum of the cost of each pipeline. Each pipeline is large enough to meet any maximum downstream demand.

$$\sum_{i \in N} C(i, \overline{q}_i), \quad \text{t.q.} \quad \overline{q}_i = \max_{k \in \hat{P}(i) \cup i} q_k.$$

Cost Sharing Rules

-A gas distribution problem is denoted by (N, P, q, C) or (N, P, q, A^C) . The class of all problems is denoted by G. -A (cost sharing) rule is a map

$$f: \mathbf{G} \to \mathbb{R}^{\sum_{i \in N} q_i}_+.$$

-It describes how much each consumer has to pay for each of their available demands.

-It recovers the total cost of operating the network.

Recall: $q_a = 2$, $q_b = 1$, $q_c = 4$, $q_d = 1$ et $q_e = 4$.

f	a	b	с	d	е
1	f_{a1}	f_{b1}	f_{c1}	f_{d1}	f_{e1}
2	f_{a2}	х	f_{c2}	х	f_{e2}
3	х	х	f_{c3}	х	f_{e3}
4	х	х	f_{c4}	х	f_{e4}

Connection principle:

" Consumers should only pay for the portion of the network

they use. "

Uniformity principle:

" Two consumers with the same demands should be charged the same amount. "

Independence principle:

"A consumer should not be charged for costs generated by demands higher than its own."

Connection principle:

" Consumers should only pay for the portion of the network they use. "

Independence principle:

"A consumer should not be charged for costs generated by demands higher than its own." The Connection rule Ψ is defined, for each $(N, P, q, A^C) \in \mathbf{G}$, by

$$\forall i \in N, j \le q_i, \quad \Psi_{ij}(N, P, q, A^C) = \sum_{k \in \hat{P}^{-1}(i) \cup i} \frac{A_{kj}^C}{(\hat{P}(k) \cup k) \cap Q(j)}.$$

 $-\hat{P}^{-1}(i)$ is the set of pipelines located upstream of i. $-Q(j) = \{k \in N : q_k \ge j\}.$ $-\hat{P}(k)$ is the set of pipelines located downstream of k.

Connection rule

c's share =
$$\Psi_{c1} + \Psi_{c2} + \Psi_{c3} + \Psi_{c4}$$

 $\Psi_{c1} = A_{c1}^C + \frac{A_{a1}^C}{3} = 5.7$
 $\Psi_{c2} = A_{c2}^C + \frac{A_{a2}^C}{2} = 8.5$
 $\Psi_{c3} = A_{c3}^C + A_{a3}^C = 8$
 $\Psi_{c4} = A_{c4}^C + A_{a4}^C = 11$

Axiom (Weak linearity) For each $(N, P, q, A^C), (q, A^{C'}) \in \mathbf{G}$ and $\beta \in \mathbb{R}_+$,

$$f(q, A^C + \beta A^{C'}) = f(q, A^C) + \beta f(q, A^{C'}).$$

Axiom (Weak linearity) For each $(N, P, q, A^C), (q, A^{C'}) \in G \text{ and } \beta \in \mathbb{R}_+,$ $f(q, A^C + \beta A^{C'}) = f(q, A^C) + \beta f(q, A^{C'}).$

Axiom (Independence to higher demands) For each $(N, P, q, A^C) \in G$ and each $l \leq q_n$,

 $\forall (i,j) \in M^+ : j \le l, \quad f_{ij}(q, A^C) = f_{ij}((l \land q_k)_{k \in N}, A^C).$

 $\underline{\text{NB:}}\ l \wedge q_k = \max\{l; q_k\}$

Pick any $i \in N$, $j \leq q_n$, the **unit cost matrix** I^{ij} is defined as

$$\forall k \in N, l \le q_n, \quad I_{kl}^{ij} = \begin{cases} 1 & \text{if } k = i, l = j, \\ 0 & \text{otherwise.} \end{cases}$$

This matrix isolates the incremental cost generated by the j-th upgrade of pipeline i.

We will use it to analyze how the cost shares of the consumers behave regarding a given incremental cost. Axiom (Independence to irrelevant costs) For each $(N, P, q, I^{ij}) \in \mathbf{G}$,

 $\forall h \in Q(j), h \notin (\hat{P}(i) \cup \{i\}), \quad f_{hj}(q, I^{ij}) = 0.$

Axiom (Independence to irrelevant costs) For each $(N, P, q, I^{ij}) \in \mathbf{G}$, $\forall h \in Q(j), h \notin (\hat{P}(i) \cup \{i\}), \quad f_{hj}(q, I^{ij}) = 0.$

Axiom (Downstream symmetry) For each $(N, P, q, I^{ij}) \in \mathbf{G}$, $\forall h, h' \in [\hat{P}(i) \cup \{i\}] \cap Q(j), \quad f_{hj}(q, I^{ij}) = f_{h'j}(q, I^{ij}).$

21

A rule f on G satisfies Weak linearity, Independence to higher demands, Independence to irrelevant costs and Downstream symmetry if and only if $f = \Psi$.

Uniformity principle:

" Two consumers with the same demands should be charged the same amount."

Independence principle:

"A consumer should not be charged for costs generated by demands higher than its own."

The Uniform rule Υ is defined, for each $(N, P, q, A^C) \in \mathbf{G}$, by

$$\forall i \in N, \forall j \le q_i, \quad \Upsilon_{ij}(q, A^C) = \frac{1}{|Q(j)|} \sum_{k \in \hat{P}^{-1}(Q(j)) \cup Q(j)} A^C_{kj}.$$

 $-Q(j) = \{k \in N : q_k \ge j\}.$ $-\hat{P}^{-1}(Q(j))$ is the set of pipelines located upstream of the consumers in Q(j).

Uniform rule

Axiom (Non-increasing inequalities) For each $(N, P, q, A^C), (N, P, q, A^{C'}) \in G$ such that $A_{ij}^{C'} \ge A_{ij}^C$, for each $i \in N$ and $j \le q_n$,

$$\begin{aligned} \forall j \in \{1, \dots, q_n\}, \\ \max_{i \in Q(j)} f_{ij}(q, A^{C'}) &- \min_{i \in Q(j)} f_{ij}(q, A^{C'}) \\ &\leq \max_{i \in Q(j)} f_{ij}(q, A^C) - \min_{i \in Q(j)} f_{ij}(q, A^C). \end{aligned}$$

A rule f on G satisfies Independence to higher demands and Non-increasing inequalities if and only if $f = \Upsilon$.

Connection principle VS Uniformity Principle

Ψ	а	b	с	d	e	Υ	a	b	с	d	e
1	1.7	1	8.7	5.7	6	1	4.6	4.6	4.6	4.6	4.6
2	2.5	х	8.5	х	11	2	7.3	х	7.3	х	7.3
3	х	х	8	х	9	3	x	х	8.5	х	8.5
4	x	х	11	х	8	4	x	х	9.5	х	9.5

Pick any $\alpha \in [0,1]^{q_n}$. The Mixed rule μ^{α} is defined, for each $(N, P, q, A^C) \in \mathbf{G}$, by

$$\forall i \in N, \forall j \leq q_i, \quad \mu_{ij}^{\alpha}(q, A^C) = \alpha_j \Psi_{ij}(q, A^C) + (1 - \alpha_j) \Upsilon_{ij}(q, A^C).$$

Pick $\alpha = (1, 0.8, 0.5, 0).$

Ψ	a	b	с	d	е		Υ	a	b	с	d	e
1	1.7	1	8.7	5.7	6	_	1	4.6	4.6	4.6	4.6	4.6
2	2.5	х	8.5	х	11		2	7.3	х	7.3	х	7.3
3	х	х	8	х	9		3	х	х	8.5	х	8.5
4	х	х	11	х	8		4	х	x	9.5	х	9.5
			μ^{lpha}	a	b	с	Ċ	1	e			
			1	1.7	1	8.7	E.	5.7	6	-		
			2	3,46	д х	8,26	Х	ζ	10, 26			
			3	x	х	8.25	2	c	8.75			
			4	x	x	9.5	2	ζ	9.5			

Axiom (Equal impact of irrelevant costs) For each $(q, I^{ij}) \in \mathbf{G}$,

 $\forall h, h' \in Q(j), h, h' \notin \hat{P}(i) \cup \{i\}, \quad f_{hj}(q, I^{ij}) = f_{h'j}(q, I^{ij}).$

Axiom (Equal impact of irrelevant costs) For each $(q, I^{ij}) \in \mathbf{G}$,

 $\forall h, h' \in Q(j), h, h' \notin \hat{P}(i) \cup \{i\}, \quad f_{hj}(q, I^{ij}) = f_{h'j}(q, I^{ij}).$

Axiom (Location independence of irrelevant costs) For each $(N, P, q, I^{ij}), (N, P, q, I^{i'j}) \in \mathbf{G},$ $\forall h \in Q(j), h \notin [\hat{P}(i) \cup \{i\}] \cup [\hat{P}(i') \cup \{i'\}], \quad f_{hj}(q, I^{ij}) = f_{hj}(q, I^{i'j}).$

Axiom (Fairness) For each $(N, P, q, I^{ij}) \in \mathbf{G}$, $\forall k \in [\hat{P}(i) \cup \{i\}] \cap Q(j), \forall h \in Q(j), \quad f_{ki}(q, I^{ij}) \geq f_{hi}(q, I^{ij}).$

A rule f on G satisfies Weak linearity, Independence to higher demands, Equal impact of irrelevant costs, Location independence of irrelevant costs and Fairness if and only if $f = \mu^{\alpha}$, for some $\alpha \in [0, 1]^{q_n}$.

Multi-Choice Games

A multi-choice game is given by:

- A finite player set $N = \{a, \ldots, n\};$
- For each $i \in N$, a finite set $M_i = \{0, \ldots, q_i\};$
- A coalition is a profile $s = (s_a, \ldots, s_n) \in \prod_{i \in N} M_i$, $q = (q_1, \ldots, q_n)$ is the grand coalition;
- A characteristic function

$$v:\prod_{i\in N}M_i\to\mathbb{R};$$

- A (multi-choice) game is denoted (q, v), the full class of multi-choice games is denoted \mathcal{G} ;

- Denote by M^+ the set of all (i, j) where $i \in N$ and $j \in M_i \setminus \{0\}$.
- A payoff vector x is an element of $\mathbb{R}^{|M^+|}$. For each $(i, j) \in M^+$, $x_{ij} \in \mathbb{R}$ specifies a payoff for the activity level j of player i.
- A value is a map

$$f: \mathcal{G} \to \mathbb{R}^{|M^+|}.$$

For each game $(q, v) \in \mathcal{G}$, the multi-choice Shapley value is defined as

$$\forall (i,j) \in M^+, \quad \varphi_{ij}(q,v) = \sum_{\substack{s \in \prod_{i \in N} M_i \\ (i,j) \in T(s)}} \frac{\Delta_v(s)}{|T(s)|}.$$

where

$$\Delta_v(s) = v(t) - \sum_{t \le s, t \ne s} \Delta_v(t)$$
$$T(s) = \left\{ (i, s_i) \in M^+ : s_i \ge s_k, \ \forall k \in N \right\}.$$

For each game $(q, v) \in \mathcal{G}$, the multi-choice Equal division value is defined as

$$\begin{aligned} \forall (i,j) \in M^+, \\ \xi_{ij}(q,v) &= \frac{1}{|Q(j)|} \Big[v((j \land q_k)_{k \in N}) - v(((j-1) \land q_k)_{k \in N})) \Big]. \\ Q(j) &= \{i \in N : q_i \ge j\}. \end{aligned}$$

For each game $(q, v) \in \mathcal{G}$, the multi-choice Equal division value is defined as

$$\forall (i,j) \in M^+, \\ \xi_{ij}(q,v) = \frac{1}{|Q(j)|} \Big[v((j \wedge q_k)_{k \in N}) - v(((j-1) \wedge q_k)_{k \in N})) \Big].$$

Pick any $\alpha \in [0,1]^{q_n}$. For each $(q,v) \in \mathcal{G}$, the multi-choice Egalitarian Shapley value χ^{α} is defined as

$$\forall (i,j) \in M^+, \quad \chi^{\alpha}_{ij}(q,v) = \alpha_j \varphi_{ij}(q,v) + (1-\alpha_j)\xi_{ij}(q,v).$$

For each $(N,P,q,A^C)\in {\bf G},$ the associated gas distribution (multi-choice) game $(q,v^{C,P})$ is defined as

$$\forall s \le q, \quad v^{C,P}(s) = \sum_{i \in N} C(i, \overline{s}_i),$$

where $\forall i \in N$, $\overline{s}_i = \max_{k \in \hat{P}(i) \cup i} s_k$.

 $v^{C,P}(s)$ is the total cost of a hypothetical gas distribution problem in which s is the profile of effective demands. For each $(N, P, q, A^C) \in \mathbf{G}$,

$$\begin{split} \varphi(q, v^{C,P}) &= \Psi(q, A^C) \\ \xi(q, v^{C,P}) &= \Upsilon(q, A^C) \\ \chi^{\alpha}(q, v^{C,P}) &= \mu^{\alpha}(q, A^C) \end{split}$$

The Core of a multi-choice game $(q,v)\in \mathcal{G}$ ([Grabisch and Xie, 2007]) is denoted by Co(q,v) and is defined as

$$x \in Co(q, v) \iff \begin{cases} \forall s \le q, \quad \sum_{i \in N} \sum_{j=1}^{s_i} x_{ij} \le v(s) \\ \forall h \le q_n, \quad \sum_{i \in N} \sum_{j=1}^{h \land q_i} x_{ij} = v((h \land q_i)_{i \in N}). \end{cases}$$

[Lowing and Techer, 2021] show that for each super-modular game $(q,v)\in \mathcal{G},$

 $\varphi(q,v)\in Co(q,v).$

<u>NB:</u> A game $(q, v) \in \mathcal{G}$ is super-modular if $v(s \lor t) + v(s \land t) \ge v(s) + v(t)$ for each $s, t \le q$.

We show that $(q, v^{C,P})$ is super-modular, therefore

$$\varphi(q,v^{C,P})\in Co(q,v^{C,P})$$

Thank You !

ī.

David LOWING

Grabisch, M. and Xie, L. (2007).

A new approach to the core and weber set of multichoice games. Mathematical Methods of Operations Research, 66(3):491–512.

Lowing, D. and Techer, K. (2021).

Marginalism, egalitarianism and efficiency in multi-choice games. *Working paper*.