Sharing the Cost of a Gas Distribution Network.

David LOWING

Ph.D. Student - GATE, Université de Lyon Saint-Etienne, France Gaz Réseau Distribution France

1. The model;

- Consumers;
- Demands;
- Network;
- Cost function.

2. Cost sharing rules;

- 3 rules;
- Axiomatic characterization.

3. Multi-choice cooperative games.

- Values and Rules;
- Core and Rules.

The Model

The model: (N, P)

Gas distribution network P
-Each consumer $i \in N$ has an maximal demand $q_{i} \in \mathbb{N}$ and is endowed with the discrete set of available demands

$$
M_{i}=\left\{0,1,2, \ldots, q_{i}\right\}
$$

-The profile of maximal demands is denoted by $q=\left(q_{a}, \ldots, q_{n}\right)$.

NB: $1 \leq q_{i} \leq q_{n}$, for all $i \in N$.

Since the network operator must be able to meet any maximal demand, each pipeline must be large enough to meet any maximal downstream demand.

-The Cost function can evaluate the cost of any pipeline of any size

$$
C: N \times\left\{1, \ldots, q_{n}\right\} \rightarrow \mathbb{R}_{+},
$$

-The cost of the i-th pipeline when sized to meet a demand of j is given by

$$
C(i, j) \in \mathbb{R}_{+}
$$

NB: $C(i, 0)=0$ and $C(i, j) \leq C(i, j+1)$, for all $j<q_{n}$.

An incremental cost $A_{i j}^{C}, i \in N, j \leq \bar{q}_{i}$, is defined as

$$
A_{i j}^{C}=C(i, j)-C(i, j-1) .
$$

C	a	b	c	d	e
1	5	2	7	4	5
2	10	8	13	9	11
3	15	12	16	13	15
4	20	15	22	17	20

$$
\begin{aligned}
A_{a 3}^{C} & =C(a, 3)-C(a, 2) \\
& =15-10 \\
& =5 .
\end{aligned}
$$

NB: An incremental cost $A_{i j}^{C}$ can be interpreted as the cost of upgrading the pipeline i from a size $j-1$ to a size j.

The model: (N, P, q, C)

The total cost is computed as the sum of the cost of each pipeline. Each pipeline is large enough to meet any maximum downstream demand.

$$
\sum_{i \in N} C\left(i, \bar{q}_{i}\right), \quad \text { t.q. } \quad \bar{q}_{i}=\max _{k \in \hat{P}(i) \cup i} q_{k} .
$$

C	a	b	c	d	e
1	5	2	7	4	5
2	10	8	13	9	10
3	15	12	16	13	15
4	20	15	22	17	20

Total $=81$.

Cost Sharing Rules

-A gas distribution problem is denoted by (N, P, q, C) or $\left(N, P, q, A^{C}\right)$. The class of all problems is denoted by G . -A (cost sharing) rule is a map

$$
f: \mathrm{G} \rightarrow \mathbb{R}_{+}^{\sum_{i \in N} q_{i}}
$$

-It describes how much each consumer has to pay for each of their available demands.
-It recovers the total cost of operating the network.

Recall: $q_{a}=2, q_{b}=1, q_{c}=4, q_{d}=1$ et $q_{e}=4$.

f	a	b	c	d	e
1	$f_{a 1}$	$f_{b 1}$	$f_{c 1}$	$f_{d 1}$	$f_{e 1}$
2	$f_{a 2}$	x	$f_{c 2}$	x	$f_{e 2}$
3	x	x	$f_{c 3}$	x	$f_{e 3}$
4	x	x	$f_{c 4}$	x	$f_{e 4}$

Principles

Connection principle:

" Consumers should only pay for the portion of the network they use.

Uniformity principle:

" Two consumers with the same demands should be charged the same amount.

Independence principle:

"A consumer should not be charged for costs generated by demands higher than its own. "

Connection principle:

" Consumers should only pay for the portion of the network they use. "

Independence principle:

"A consumer should not be charged for costs generated by demands higher than its own. "

Connection rule

The Connection rule Ψ is defined, for each $\left(N, P, q, A^{C}\right) \in \mathrm{G}$, by

$$
\forall i \in N, j \leq q_{i}, \quad \Psi_{i j}\left(N, P, q, A^{C}\right)=\sum_{k \in \hat{P}^{-1}(i) \cup i} \frac{A_{k j}^{C}}{(\hat{P}(k) \cup k) \cap Q(j)}
$$

$-\hat{P}^{-1}(i)$ is the set of pipelines located upstream of i.
$-Q(j)=\left\{k \in N: q_{k} \geq j\right\}$.

- $\hat{P}(k)$ is the set of pipelines located downstream of k.

Connection rule

c's share $=\Psi_{c 1}+\Psi_{c 2}+\Psi_{c 3}+\Psi_{c 4}$
$\Psi_{c 1}=A_{c 1}^{C}+\frac{A_{a 1}^{C}}{3}=5.7$
$\Psi_{c 2}=A_{c 2}^{C}+\frac{A_{a 2}^{C}}{2}=8.5$
$\Psi_{c 3}=A_{c 3}^{C}+A_{a 3}^{C}=8$
$\Psi_{c 4}=A_{c 4}^{C}+A_{a 4}^{C}=11$

Axiom (Weak linearity)
For each $\left(N, P, q, A^{C}\right),\left(q, A^{C^{\prime}}\right) \in \mathrm{G}$ and $\beta \in \mathbb{R}_{+}$,

$$
f\left(q, A^{C}+\beta A^{C^{\prime}}\right)=f\left(q, A^{C}\right)+\beta f\left(q, A^{C^{\prime}}\right)
$$

Axiom (Weak linearity)
For each $\left(N, P, q, A^{C}\right),\left(q, A^{C^{\prime}}\right) \in \mathrm{G}$ and $\beta \in \mathbb{R}_{+}$,

$$
f\left(q, A^{C}+\beta A^{C^{\prime}}\right)=f\left(q, A^{C}\right)+\beta f\left(q, A^{C^{\prime}}\right)
$$

Axiom (Independence to higher demands)
For each $\left(N, P, q, A^{C}\right) \in \mathrm{G}$ and each $l \leq q_{n}$,

$$
\forall(i, j) \in M^{+}: j \leq l, \quad f_{i j}\left(q, A^{C}\right)=f_{i j}\left(\left(l \wedge q_{k}\right)_{k \in N}, A^{C}\right)
$$

NB: $l \wedge q_{k}=\max \left\{l ; q_{k}\right\}$

Pick any $i \in N, j \leq q_{n}$, the unit cost matrix $I^{i j}$ is defined as

$$
\forall k \in N, l \leq q_{n}, \quad I_{k l}^{i j}= \begin{cases}1 & \text { if } k=i, l=j \\ 0 & \text { otherwise }\end{cases}
$$

This matrix isolates the incremental cost generated by the j-th upgrade of pipeline i.
We will use it to analyze how the cost shares of the consumers behave regarding a given incremental cost.

Axiomatic characterization

Axiom (Independence to irrelevant costs)
For each $\left(N, P, q, I^{i j}\right) \in \mathrm{G}$,

$$
\forall h \in Q(j), h \notin(\hat{P}(i) \cup\{i\}), \quad f_{h j}\left(q, I^{i j}\right)=0 .
$$

Axiom (Independence to irrelevant costs)
For each $\left(N, P, q, I^{i j}\right) \in \mathrm{G}$,

$$
\forall h \in Q(j), h \notin(\hat{P}(i) \cup\{i\}), \quad f_{h j}\left(q, I^{i j}\right)=0
$$

Axiom (Downstream symmetry)
For each $\left(N, P, q, I^{i j}\right) \in \mathrm{G}$,

$$
\forall h, h^{\prime} \in[\hat{P}(i) \cup\{i\}] \cap Q(j), \quad f_{h j}\left(q, I^{i j}\right)=f_{h^{\prime} j}\left(q, I^{i j}\right) .
$$

A rule f on G satisfies Weak linearity, Independence to higher demands, Independence to irrelevant costs and Downstream symmetry if and only if $f=\Psi$.

Principles

Uniformity principle:

" Two consumers with the same demands should be charged the same amount. "

Independence principle:

"A consumer should not be charged for costs generated by demands higher than its own. "

The Uniform rule Υ is defined, for each $\left(N, P, q, A^{C}\right) \in \mathrm{G}$, by

$$
\forall i \in N, \forall j \leq q_{i}, \quad \Upsilon_{i j}\left(q, A^{C}\right)=\frac{1}{|Q(j)|} \sum_{k \in \hat{P}^{-1}(Q(j)) \cup Q(j)} A_{k j}^{C}
$$

$-Q(j)=\left\{k \in N: q_{k} \geq j\right\}$.
$-\hat{P}^{-1}(Q(j))$ is the set of pipelines located upstream of the consumers in $Q(j)$.

Uniform rule

$$
\begin{aligned}
\text { c's share } & =\Upsilon_{c 1}+\Upsilon_{c 2}+\Upsilon_{c 3}+\Upsilon_{c 4} \\
\Upsilon_{c 1} & =\frac{1}{5}\left(A_{a 1}^{C}+A_{b 1}^{C}+A_{c 1}^{C}+A_{d 1}^{C}+A_{e 1}^{C}\right) \\
& =4.6 \\
\Upsilon_{c 2} & =\frac{1}{3}\left(A_{a 2}^{C}+A_{b 2}^{C}+A_{c 2}^{C}+A_{e 2}^{C}\right) \\
& =7.3 \\
\Upsilon_{c 3} & =\frac{1}{2}\left(A_{a 3}^{C}+A_{b 3}^{C}+A_{c 3}^{C}+A_{e 3}^{C}\right) \\
& =8.5 \\
\Upsilon_{c 4} & =\frac{1}{2}\left(A_{a 4}^{C}+A_{b 4}^{C}+A_{c 4}^{C}+A_{e 4}^{C}\right) \\
& =9.5
\end{aligned}
$$

Axiom (Non-increasing inequalities)
For each $\left(N, P, q, A^{C}\right),\left(N, P, q, A^{C^{\prime}}\right) \in \mathrm{G}$ such that $A_{i j}^{C^{\prime}} \geq A_{i j}^{C}$, for each $i \in N$ and $j \leq q_{n}$,

$$
\begin{aligned}
& \forall j \in\left\{1, \ldots, q_{n}\right\} \\
& \max _{i \in Q(j)} f_{i j}\left(q, A^{C^{\prime}}\right)-\min _{i \in Q(j)} f_{i j}\left(q, A^{C^{\prime}}\right) \\
& \leq \max _{i \in Q(j)} f_{i j}\left(q, A^{C}\right)-\min _{i \in Q(j)} f_{i j}\left(q, A^{C}\right)
\end{aligned}
$$

A rule f on G satisfies Independence to higher demands and Non-increasing inequalities if and only if $f=\Upsilon$.

Connection principle VS Uniformity Principle

Mixed rules

Ψ	a	b	c	d	e
1	1.7	1	8.7	5.7	6
2	2.5	x	8.5	x	11
3	x	x	8	x	9
4	x	x	11	x	8

Υ	a	b	c	d	e
1	4.6	4.6	4.6	4.6	4.6
2	7.3	x	7.3	x	7.3
3	x	x	8.5	x	8.5
4	x	x	9.5	x	9.5

Pick any $\alpha \in[0,1]^{q_{n}}$. The Mixed rule μ^{α} is defined, for each $\left(N, P, q, A^{C}\right) \in \mathrm{G}$, by
$\forall i \in N, \forall j \leq q_{i}, \quad \mu_{i j}^{\alpha}\left(q, A^{C}\right)=\alpha_{j} \Psi_{i j}\left(q, A^{C}\right)+\left(1-\alpha_{j}\right) \Upsilon_{i j}\left(q, A^{C}\right)$.

Pick $\alpha=(1,0.8,0.5,0)$.

Ψ	a	b	c	d	e
1	1.7	1	8.7	5.7	6
2	2.5	x	8.5	x	11
3	x	x	8	x	9
4	x	x	11	x	8

Υ	a	b	c	d	e
1	4.6	4.6	4.6	4.6	4.6
2	7.3	x	7.3	x	7.3
3	x	x	8.5	x	8.5
4	x	x	9.5	x	9.5

μ^{α}	a	b	c	d	e
1	1.7	1	8.7	5.7	6
2	3,46	x	8,26	x	10,26
3	x	x	8.25	x	8.75
4	x	x	9.5	x	9.5

Axiomatic characterization

Axiom (Equal impact of irrelevant costs)
For each $\left(q, I^{i j}\right) \in \mathrm{G}$,

$$
\forall h, h^{\prime} \in Q(j), h, h^{\prime} \notin \hat{P}(i) \cup\{i\}, \quad f_{h j}\left(q, I^{i j}\right)=f_{h^{\prime} j}\left(q, I^{i j}\right) .
$$

Axiom (Equal impact of irrelevant costs)
For each $\left(q, I^{i j}\right) \in \mathrm{G}$,

$$
\forall h, h^{\prime} \in Q(j), h, h^{\prime} \notin \hat{P}(i) \cup\{i\}, \quad f_{h j}\left(q, I^{i j}\right)=f_{h^{\prime} j}\left(q, I^{i j}\right)
$$

Axiom (Location independence of irrelevant costs)
For each $\left(N, P, q, I^{i j}\right),\left(N, P, q, I^{i^{\prime} j}\right) \in \mathrm{G}$,
$\forall h \in Q(j), h \notin[\hat{P}(i) \cup\{i\}] \cup\left[\hat{P}\left(i^{\prime}\right) \cup\left\{i^{\prime}\right\}\right], \quad f_{h j}\left(q, I^{i j}\right)=f_{h j}\left(q, I^{i^{\prime} j}\right)$.

Axiom (Fairness)
For each $\left(N, P, q, I^{i j}\right) \in \mathrm{G}$,
$\forall k \in[\hat{P}(i) \cup\{i\}] \cap Q(j), \forall h \in Q(j), \quad f_{k j}\left(q, I^{i j}\right) \geq f_{h j}\left(q, I^{i j}\right)$.

A rule f on G satisfies Weak linearity, Independence to higher demands, Equal impact of irrelevant costs, Location independence of irrelevant costs and Fairness if and only if $f=\mu^{\alpha}$, for some $\alpha \in[0,1]^{q_{n}}$.

Multi-Choice Games

A multi-choice game is given by:

- A finite player set $N=\{a, \ldots, n\}$;
- For each $i \in N$, a finite set $M_{i}=\left\{0, \ldots, q_{i}\right\}$;
- A coalition is a profile $s=\left(s_{a}, \ldots, s_{n}\right) \in \prod_{i \in N} M_{i}$, $q=\left(q_{1}, \ldots, q_{n}\right)$ is the grand coalition;
- A characteristic function

$$
v: \prod_{i \in N} M_{i} \rightarrow \mathbb{R}
$$

- A (multi-choice) game is denoted (q, v), the full class of multi-choice games is denoted \mathcal{G};
- Denote by M^{+}the set of all (i, j) where $i \in N$ and $j \in M_{i} \backslash\{0\}$.
- A payoff vector x is an element of $\mathbb{R}^{\left|M^{+}\right|}$. For each $(i, j) \in M^{+}, x_{i j} \in \mathbb{R}$ specifies a payoff for the activity level j of player i.
- A value is a map

$$
f: \mathcal{G} \rightarrow \mathbb{R}^{\left|M^{+}\right|}
$$

For each game $(q, v) \in \mathcal{G}$, the multi-choice Shapley value is defined as

$$
\forall(i, j) \in M^{+}, \quad \varphi_{i j}(q, v)=\sum_{\substack{s \in \prod_{i \in N} M_{i} \\(, j) \in T(s)}} \frac{\Delta_{v}(s)}{|T(s)|}
$$

where

$$
\begin{aligned}
& \Delta_{v}(s)=v(t)-\sum_{t \leq s, t \neq s} \Delta_{v}(t) \\
& T(s)=\left\{\left(i, s_{i}\right) \in M^{+}: s_{i} \geq s_{k}, \forall k \in N\right\} .
\end{aligned}
$$

For each game $(q, v) \in \mathcal{G}$, the multi-choice Equal division value is defined as

$$
\begin{aligned}
& \forall(i, j) \in M^{+} \\
& \left.\quad \xi_{i j}(q, v)=\frac{1}{|Q(j)|}\left[v\left(\left(j \wedge q_{k}\right)_{k \in N}\right)-v\left(\left((j-1) \wedge q_{k}\right)_{k \in N}\right)\right)\right] . \\
& Q(j)=\left\{i \in N: q_{i} \geq j\right\} .
\end{aligned}
$$

For each game $(q, v) \in \mathcal{G}$, the multi-choice Equal division value is defined as

$$
\begin{aligned}
& \forall(i, j) \in M^{+} \\
& \left.\xi_{i j}(q, v)=\frac{1}{|Q(j)|}\left[v\left(\left(j \wedge q_{k}\right)_{k \in N}\right)-v\left(\left((j-1) \wedge q_{k}\right)_{k \in N}\right)\right)\right]
\end{aligned}
$$

Pick any $\alpha \in[0,1]^{q_{n}}$. For each $(q, v) \in \mathcal{G}$, the multi-choice Egalitarian Shapley value χ^{α} is defined as

$$
\forall(i, j) \in M^{+}, \quad \chi_{i j}^{\alpha}(q, v)=\alpha_{j} \varphi_{i j}(q, v)+\left(1-\alpha_{j}\right) \xi_{i j}(q, v)
$$

For each $\left(N, P, q, A^{C}\right) \in \mathrm{G}$, the associated gas distribution (multi-choice) game ($q, v^{C, P}$) is defined as

$$
\forall s \leq q, \quad v^{C, P}(s)=\sum_{i \in N} C\left(i, \bar{s}_{i}\right)
$$

where $\forall i \in N, \quad \bar{s}_{i}=\max _{k \in \hat{P}(i) \cup i} s_{k}$.
$v^{C, P}(s)$ is the total cost of a hypothetical gas distribution problem in which s is the profile of effective demands.

For each $\left(N, P, q, A^{C}\right) \in \mathrm{G}$,

$$
\begin{aligned}
\varphi\left(q, v^{C, P}\right) & =\Psi\left(q, A^{C}\right) \\
\xi\left(q, v^{C, P}\right) & =\Upsilon\left(q, A^{C}\right) \\
\chi^{\alpha}\left(q, v^{C, P}\right) & =\mu^{\alpha}\left(q, A^{C}\right)
\end{aligned}
$$

Core and rules

The Core of a multi-choice game $(q, v) \in \mathcal{G}$ (
[Grabisch and Xie, 2007]) is denoted by $C o(q, v)$ and is defined as

$$
x \in C o(q, v) \Longleftrightarrow \begin{cases}\forall s \leq q, & \sum_{i \in N} \sum_{j=1}^{s_{i}} x_{i j} \leq v(s) \\ \forall h \leq q_{n}, & \sum_{i \in N} \sum_{j=1}^{h \wedge q_{i}} x_{i j}=v\left(\left(h \wedge q_{i}\right)_{i \in N}\right) .\end{cases}
$$

Core and rules

[Lowing and Techer, 2021] show that for each super-modular game $(q, v) \in \mathcal{G}$,

$$
\varphi(q, v) \in C o(q, v)
$$

NB: A game $(q, v) \in \mathcal{G}$ is super-modular if $v(s \vee t)+v(s \wedge t) \geq v(s)+v(t)$ for each $s, t \leq q$.

Core and rules

We show that $\left(q, v^{C, P}\right)$ is super-modular, therefore

$$
\varphi\left(q, v^{C, P}\right) \in C o\left(q, v^{C, P}\right)
$$

Thank You!

Grabisch, M. and Xie, L. (2007).
A new approach to the core and weber set of multichoice games.
Mathematical Methods of Operations Research, 66(3):491-512.
Lowing, D. and Techer, K. (2021).
Marginalism, egalitarianism and efficiency in multi-choice games. Working paper.

