Decentralized multilateral bargaining

Yuan Ju (University of York)

Juan Vidal-Puga (Universidade de Vigo)

Outline

1. Nash program
2. Cooperative NTU games
3. Non-cooperative game
4. Conclusions

Section 1

Nash program

Game theory

Cooperative game theory

Non-cooperative game theory

Game theory

Cooperative game theory

Non-cooperative game theory

- Implementation
- Nash program
- Non-cooperative approach

Section 2

Cooperative NTU games

NTU games

Transferable utility (TU) games

- Partial agreements
- Transferable utility
- Shapley value (1953)

NTU games

Transferable utility (TU) games

- Partial agreements
- Transferable utility
- \quad Shapley value (1953)

Bargaining problems

- Unanimity required
- Non-transferable utility
- Nash solution (1950)

NTU games

Non transferable utility (NTU) games

- Partial agreements
- Non-transferable utility
- Harsanyi value (1963), Shapley NTU value (1969), consistent value $(1989,1992)$

Transferable utility (TU) games

- Partial agreements
- Transferable utility
- Shapley value (1953)

Bargaining problems

- Unanimity required
- Non-transferable utility
- Nash solution (1950)

The model

A Non-Transferable Utility (NTU) game is a pair (N, V) where:

- $N=\{1,2, \ldots, n\}$ is a set of players
- $V: S \subseteq N \rightarrow V(S) \subset \mathbb{R}^{S}$ correspondence satisfying:
- $\quad V(S)$ non-empty, closed, convex, comprehensive, and bounded-above.
- Superadditivity: $V(S) x V(T) \subset V(S \cup T)$ for all $S, T \subset N, S \cap T=\varnothing$.
- $\quad V(S)$ nonlevel: For each x in the frontier of $V(S)$, there exists a unique normalized vector λ orthogonal to $V(S)$ on x with all its coordinates positive.

A rule is a function Φ that assigns to each NTU game (N, V) a payoff allocation Φ $(N, V) \in V(N)$.

Example

Pure exchange economy with three players.
Water grains and water are required to prepare coffee. Sugar is optional.

- Player 1 has coffee grains, and prefers coffee with sugar.
- Player 2 has water.
- Player 3 has sugar.

Example

Pure exchange economy with three players.
Water grains and water are required to prepare coffee. Sugar is optional.

- Player 1 has coffee grains, and prefers coffee with sugar.
- Player 2 has water.
- Player 3 has sugar.

$$
\begin{aligned}
& V(\{i\})=\left\{x \in \mathbb{R}^{\{i\}}: x_{i} \leq 0\right\} \\
& V(\{1,2\})=\left\{x \in \mathbb{R}^{\{1,2\}}: 2 x_{1}+x_{2} \leq 1\right\} \\
& V(\{1,3\})=\left\{x \in \mathbb{R}^{\{1,3\}}: x_{1}, x_{3} \leq 0\right\} \\
& V(\{2,3\})=\left\{x \in \mathbb{R}^{\{2,3\}}: x_{2}, x_{3} \leq 0\right\} \\
& V(N)=\left\{x \in \mathbb{R}^{N}: x_{1}+x_{2}+x_{3} \leq 1\right\}
\end{aligned}
$$

The model

A Transferable Utility (TU) game is a pair (N, v) where:

- $N=\{1,2, \ldots, n\}$ is a set of players
- $v: S \subseteq N \rightarrow v(S) \in \mathbb{R}$ correspondence satisfying $v(\varnothing)=0$.

The model

A Transferable Utility (TU) game is a pair (N, v) where:

- $N=\{1,2, \ldots, n\}$ is a set of players
- $v: S \subseteq N \rightarrow v(S) \in \mathbb{R}$ correspondence satisfying $v(\varnothing)=0$.

Shapley value for TU games:

$$
S h_{i}(N, v)=\sum_{S \subset N: i \in S} d_{v}(S) / / S \mid
$$

where $d_{v}(S) \in \mathbb{R}$ are the Harsanyi dividends of v.

$$
S h_{i}(N, v)=\sum_{\pi \in \Pi} m_{i}^{\pi}(v) /|\Pi|
$$

where $m^{\pi}(v) \in \mathbb{R}^{N}$ are the marginal contributions vectors of v under order π.

TU games

Any TU game is also an NTU game.

TU games

Any TU game is also an NTU game.

$$
\begin{aligned}
& v(\{i\})=0 \\
& v(\{1,2\})=6 \\
& v(\{1,3\})=6 \\
& v(\{2,3\})=0 \\
& v(N)=6
\end{aligned}
$$

TU games

Any TU game is also an NTU game.

$$
\begin{aligned}
& v(\{i\})=0 \\
& v(\{1,2\})=6 \\
& v(\{1,3\})=6 \\
& v(\{2,3\})=0 \\
& v(N)=6
\end{aligned}
$$

$\operatorname{Sh}(N, v)=(4,1,1)$

TU games

Any TU game is also an NTU game.

$$
\begin{array}{ll}
v(\{i\})=0 & V(\{i\})=\left\{x \in \mathbb{R}^{\{i\}}: x_{j} \leq 0\right\} \\
v(\{1,2\})=6 & V(\{1,2\})=\left\{x \in \mathbb{R}^{\{1,2\}}: x_{1}+x_{2} \leq 6\right\} \\
v(\{1,3\})=6 & V(\{1,3\})=\left\{x \in \mathbb{R}^{\{1,3\}}: x_{1}+x_{3} \leq 6\right\} \\
v(\{2,3\})=0 & V(\{2,3\})=\left\{x \in \mathbb{R}^{\{2,3\}}: x_{2}+x_{3} \leq 0\right\} \\
v(N)=6 & V(N)=\left\{x \in \mathbb{R}^{N}: x_{1}+x_{2}+x_{3} \leq 6\right\}
\end{array}
$$

$\operatorname{Sh}(N, v)=(4,1,1)$

TU games

Any TU game is also an NTU game.

$$
\begin{array}{ll}
v(\{i\})=0 & V(\{i\})=\left\{x \in \mathbb{R}^{\{i\}}: x_{j} \leq 0\right\} \\
v(\{1,2\})=6 & V(\{1,2\})=\left\{x \in \mathbb{R}^{\{1,2\}}: x_{1}+x_{2} \leq 6\right\} \\
v(\{1,3\})=6 & V(\{1,3\})=\left\{x \in \mathbb{R}^{\{1,3\}}: x_{1}+x_{3} \leq 6\right\} \\
v(\{2,3\})=0 & V(\{2,3\})=\left\{x \in \mathbb{R}^{\{2,3\}}: x_{2}+x_{3} \leq 0\right\} \\
v(N)=6 & V(N)=\left\{x \in \mathbb{R}^{N}: x_{1}+x_{2}+x_{3} \leq 6\right\}
\end{array}
$$

$\operatorname{Sh}(N, v)=(4,1,1)$
$\operatorname{Sh}(N, V)=(4,1,1)$

TU games

Any TU game is also an NTU game.

If the utility is interchangeable at a fixed rate, the game is still (essentially) TU:

$$
\begin{array}{lll}
v(\{i\})=0 & V(\{i\})=\left\{x \in \mathbb{R}^{\{i\}}: x_{i} \leq 0\right\} & V(\{i\})=\left\{x \in \mathbb{R}^{\{i\}}: \lambda_{i} x_{i} \leq 0\right\} \\
v(\{1,2\})=6 & V(\{1,2\})=\left\{x \in \mathbb{R}^{\{1,2\}}: x_{1}+x_{2} \leq 6\right\} & V(\{1,2\})=\left\{x \in \mathbb{R}^{\{1,1,\}}: \lambda_{1} x_{1}+\lambda_{2} x_{2} \leq 6\right\} \\
v(\{1,3\})=6 & V(\{1,3\})=\left\{x \in \mathbb{R}^{\{1,3\}}: x_{1}+x_{3} \leq 6\right\} & V(\{1,3\})=\left\{x \in \mathbb{R}^{\{1,3\}}: \lambda_{1} x_{1}+\lambda_{3} x_{3} \leq 6\right\} \\
v(\{2,3\})=0 & V(\{2,3\})=\left\{x \in \mathbb{R}^{\{2,3\}}: x_{2}+x_{3} \leq 0\right\} & V(\{2,3\})=\left\{x \in \mathbb{R}^{\{2,3\}}: \lambda_{2} x_{2}+\lambda_{3} x_{3} \leq 0\right\} \\
v(N)=6 & V(N)=\left\{x \in \mathbb{R}^{N}: x_{1}+x_{2}+x_{3} \leq 6\right\} & V(N)=\left\{x \in \mathbb{R}^{N}: \lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{2} x_{3} \leq 6\right\}
\end{array}
$$

$\operatorname{Sh}(N, v)=(4,1,1)$
$\operatorname{Sh}(N, V)=(4,1,1)$

TU games

Any TU game is also an NTU game.

If the utility is interchangeable at a fixed rate, the game is still (essentially) TU:

$$
\begin{aligned}
& \begin{array}{l}
v(\{i\})=0 \\
v(\{1,2\})=6 \\
v(\{1,3\})=6 \\
v(\{2,3\})=0 \\
v(N)=6
\end{array} \\
& V(\{i\})=\left\{x \in \mathbb{R}^{\{i\}}: x_{i} \leq 0\right\} \\
& \begin{array}{l}
V(\{i\})=\left\{x \in \mathbb{R}^{\{i,}: \lambda_{1} x_{1} \leq 0\right\} \\
V(\{1,2\})=\left\{x \in \mathbb{R}^{\{1,2,}: \lambda_{1} x_{1}+\lambda_{2} x_{2} \leq 6\right\} \\
V(\{1,3\})=\left\{x \in \mathbb{R}^{\{1,1,\}}: \lambda_{1} x_{1}+\lambda_{3} x_{3} \leq 6\right\} \\
V(\{2,3\})=\left\{x \in \mathbb{R}^{\{2,3\}}: \lambda_{2} x_{2} \lambda_{3} x_{3} \leq 0\right\} \\
V(N)=\left\{x \in \mathbb{R}^{N}: \lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{2} x_{3} \leq 6\right\}
\end{array} \\
& V(\{1,2\})=\left\{x \in \mathbb{R}^{\{1,2\}}: x_{1}+x_{2} \leq 6\right\} \\
& V(\{1,3\})=\left\{x \in \mathbb{R}^{\{1,3\}}: x_{1}+x_{3} \leq 6\right\} \\
& V(\{2,3\})=\left\{x \in \mathbb{R}^{\{2,3\}}: x_{2}+x_{3} \leq 0\right\} \\
& V(N)=\left\{x \in \mathbb{R}^{N}: x_{1}+x_{2}+x_{3} \leq 6\right\} \\
& \operatorname{Sh}(N, v)=(4,1,1) \\
& \operatorname{Sh}(N, V)=(4,1,1) \\
& \operatorname{Sh}(N, V)=\left(4 / \lambda_{1}, 1 / \lambda_{2}, 1 / \lambda_{3}\right)
\end{aligned}
$$

Money as utility

1. We give players money with exchange rates given by some $\lambda \in \Delta^{N}$.

Money as utility

1. We give players money with exchange rates given by some $\lambda \in \Delta^{N}$.
2. With such money acting as (transferable) utility, we have a TU game (N, v^{\wedge}).

Money as utility

1. We give players money with exchange rates given by some $\lambda \in \Delta^{N}$.
2. With such money acting as (transferable) utility, we have a TU game (N, v^{\wedge}).
3. We compute $\operatorname{Sh}\left(N, v^{\wedge}\right)$ using with this λ either the Harsanyi procedure or the average of marginal contributions vectors.

Money as utility

1. We give players money with exchange rates given by some $\lambda \in \Delta^{N}$.
2. With such money acting as (transferable) utility, we have a TU game (N, v^{\wedge}).
3. We compute $\operatorname{Sh}\left(N, v^{\wedge}\right)$ using with this λ either the Harsanyi procedure or the average of marginal contributions vectors.
4. If $\operatorname{Sh}\left(N, v^{\wedge}\right) \in V(N)$, we say that $S h\left(N, v^{\wedge}\right)$ is a Shapley NTU value of (N, V).

The Shapley NTU value (Shapley, 1969)

Pure exchange economy with three players.
Water grains and water are required to prepare coffee. Sugar is optional.

- Player 1 has coffee grains, and prefers coffee with sugar.
- Player 2 has water.
- Player 3 has sugar.

Money as utility (alternative 1)

1. We give players money with exchange rates given by $\left(\lambda^{S}\right)_{S \subseteq N}$ with $\lambda^{S} \in \Delta^{S}$ for all $S \subseteq N$.
(Exchange rates depend on which players participate).

Money as utility (alternative 1)

1. We give players money with exchange rates given by $\left(\lambda^{S}\right)_{S \subseteq N}$ with $\lambda^{S} \in \Delta^{S}$ for all $S \subseteq N$.
(Exchange rates depend on which players participate).
2. With such money acting as (transferable) utility in each coalition, we can use the Harsanyi procedure with λ^{N} in order to compute a payoff allocation $H\left(N, \nu^{\wedge}\right)$.

Money as utility (alternative 1)

1. We give players money with exchange rates given by $\left(\lambda^{S}\right)_{S \subseteq N}$ with $\lambda^{S} \in \Delta^{S}$ for all $S \subseteq N$.
(Exchange rates depend on which players participate).
2. With such money acting as (transferable) utility in each coalition, we can use the Harsanyi procedure with λ^{N} in order to compute a payoff allocation $H\left(N, v^{\wedge}\right)$.
3. If $H\left(N, \nu^{\wedge}\right) \in V(N)$, we say that $H\left(N, v^{\wedge}\right)$ is a Harsanyi value of (N, V).

The Harsanyi value (Harsanyi, 1963)

Pure exchange economy with three players.
Water grains and water are required to prepare coffee. Sugar is optional.

- Player 2 has water.
- Player 3 has sugar.
- Player 1 has coffee grains, and prefers coffee with sugar.

Harsanyi
value

Money as utility (alternative 2)

1. We give players money with exchange rates given by $\left(\lambda^{S}\right)_{S \subseteq N}$ with $\lambda^{S} \in \Delta^{S}$ for all $S \subseteq N$.
(Exchange rates depend on which players participate).

Money as utility (alternative 2)

1. We give players money with exchange rates given by $\left(\lambda^{S}\right)_{S \subseteq \mathrm{~N}}$ with $\lambda^{S} \in \boldsymbol{\Delta}^{S}$ for all $S \subseteq N$.
(Exchange rates depend on which players participate).
2. With such money acting as (transferable) utility in each coalition, we can use the average of marginal contributions vectors with each λ^{s} in order to compute a payoff allocation $C\left(N, \nu^{\wedge}\right)$.

Money as utility (alternative 2)

1. We give players money with exchange rates given by $\left(\lambda^{S}\right)_{S \subseteq \mathrm{~N}}$ with $\lambda^{S} \in \boldsymbol{\Delta}^{S}$ for all $S \subseteq N$.
(Exchange rates depend on which players participate).
2. With such money acting as (transferable) utility in each coalition, we can use the average of marginal contributions vectors with each λ^{s} in order to compute a payoff allocation $C\left(N, \nu^{\mathfrak{\wedge}}\right)$.
3. If $C\left(N, v^{\wedge}\right) \in V(N)$, we say that $C\left(N, v^{\wedge}\right)$ is a consistent value of (N, V).

The consistent value (Maschler and Owen, 1992)

Pure exchange economy with three players.
Water grains and water are required to prepare coffee. Sugar is optional.

- Player 1 has coffee grains, and prefers coffee with sugar.
- Player 2 has water.
- Player 3 has sugar.

consistent value

1
1
2

Generalizations of the Shapley value

			Exchange r	
			Coalition dependent $\left(\lambda^{S}\right)_{S \subseteq N}$, $\lambda^{S} \in \Delta^{S} \forall S \subseteq N$	Constant $\lambda \in \boldsymbol{\Delta}^{N}$
	Harsanyi	λ^{S}		
	dividends	λ^{N}		
	average of contributio			

Generalizations of the Shapley value

			Exchange r	
			Coalition dependent $\left(\lambda^{S}\right)_{S \subseteq N}$, $\lambda^{S} \in \Delta^{S} \forall S \subseteq N$	Constant $\lambda \in \boldsymbol{\Delta}^{N}$
	Harsanyi	λ^{S}		
procedure	dividen	λ^{N}		Shapley NTU
	average of contributio			

Generalizations of the Shapley value

Generalizations of the Shapley value

			Exchange r	
			Coalition dependent $\left(\lambda^{S}\right)_{\mathrm{S} \subseteq \mathrm{N}}$, $\lambda^{S} \in \Delta^{S} \forall S \subseteq N$	Constant $\lambda \in \boldsymbol{\Delta}^{N}$
	Harsanyi	λ^{S}		
procedure	divide	λ^{N}	Harsanyi value	Shapley NTU
	average of contributio		Consistent value	

Generalizations of the Shapley value

Section 3

Non-cooperative game

Implementation of the Nash solution in bargaining games

- Nash (Econometrica, 1953)
- Rubinstein (Econometrica, 1982)
- van Damme (JET, 1986)
- Binmore ("The economics of bargaining", ed. by Binmore and Dasgupta, 1987)
- Maschler, Owen and Peleg ("The Shapley value", ed. by Roth, 1988)
- Hart and Mas-Colell (Econometrica, 1996)

Implementation of the Shapley value in TU games

- Gul (Econometrica, 1989)
- Hart and Moore (J Pol Ec, 1990)
- Winter (ET, 1994)
- Evans (GEB, 1992)
- Hart and Mas-Colell (Econometrica, 1996)
- Dasgupta and Chiu (IJGT, 1998)
- Pérez-Castrillo and Wettstein (JET, 2001)
- Vidal-Puga (EJOR, 2008)
- Ju (JME, 2012)

Common features when dealing with partial agreements

- Players "play" (make offers and counteroffers, agree or disagree, vote, make partial payoffs, ...) in N.
- Eventually, players split (or some are simply excluded) and the bargaining goes on in some (or several) subcoalition S, without possibility to rejoin.
- The risk of these splits is the tool that make players in N to reach an agreement in equilibrium.

Alternative features when dealing with partial agreements

- Players "play" (make offers and counteroffers, agree or disagree, vote, make partial payoffs, ...) in N, but their offers also consider the payoffs in case of disagreement.
- Players never split (nor are excluded) nor the bargaining goes on in some (or several) subcoalition S.
- The risk of disagreement is the tool that make players in N to reach an agreement in equilibrium.

Common and alternative features when dealing with partial agreements

- Players "play" (make offers and counteroffers, agree or disagree, vote, make partial payoffs, etc) in N.
- Eventually, players split (or some are simply excluded) and the bargaining goes on in some (or several) subcoalition S, without possibility to rejoin.
- The risk of these splits is the tool that make players in N to reach an agreement in equilibrium.
- Players "play" (make offers and counteroffers, agree or disagree, vote, make partial payoffs, etc) in N, but their offers also consider the payoffs in case of disagreement.
- Players never split (nor are excluded) nor the bargaining goes on in some (or several) subcoalition S.
- The risk of disagreement is the tool that make players in N to reach an agreement in equilibrium.

The non-cooperative game: Rounds 1 and 2

An order of the players is randomly chosen (assume 12...n).

1. Player 1 presents a rule $f: S \subseteq N \rightarrow f(S) \subseteq V(S)$.
2. Player 2 either
a. agrees on f and joins $\{1\}$, or
b. disagrees and proposes a new rule f to player 1
i. If player 1 accepts, $\{1,2\}$ forms with rule f^{*}, and the turn passes to player 3.
ii. If player 2 rejects, it does not join $\{1\}$ and the turn passes to player 3.

The non-cooperative game: Round r

Player r faces $\left(\left(S^{1}, f^{1}\right), \ldots,\left(S^{k}, f^{k}\right)\right)$ where

- $\left\{S^{1}, \ldots, S^{k}\right\}$ is a partition of $\{1, \ldots, r-1\}$ and
- $\left(f^{1}, \ldots, f^{h}\right)$ is the vector of rules they have respectively agreed upon.

Player r either

1. agrees on some $\left(S_{,}^{l} f^{l}\right)$ and joins S^{l}, or
2. disagrees and proposes a new rule $f *$ to everyone.
a. If some coalitions accept (unanimity required inside), they form a new merged coalition with r and rule f^{*}, and the turn passes to player $r+1$.
b. If all coalitions reject, player r does not join any coalition and the turn passes to $r+1$ with $\left(\left(S^{1}, f^{1}\right), \ldots,\left(S^{k}, f^{k}\right),\left(\{r\}, f^{*}\right)\right)$.

Round r

Player r
Player $r+1$

Last round $(n+1)$

- If we face $((\{N\}),(f))$, i.e., all coalitions have unanimously agreed on a single rule f, then each $i \in N$ receives $f_{i}(N)$ and the game finishes.
- If we face $\left(\left(S^{1}, f^{1}\right), \ldots,\left(S^{k}, f^{k}\right)\right)$ with $k>1$, i.e., there is no unanimity, then
- With probability $\varrho \in[0,1)$, the whole process is repeated with a new order.
- With probability $1-\varrho$, each $i \in S^{l}$ receives $f_{i}^{l}\left(S^{\prime}\right)$ and the game finishes.

Main result

There exists a stationary subgame perfect equilibrium payoff allocation for each order. Moreover, this payoff allocation is efficient and individually rational.

Furthermore, as ϱ approaches 1, the expected final payoff allocation approaches a Shapley NTU value.

Corollary:

- For TU games, the Shapley value is the unique expected equilibrium payoff.
- For bargaining problems, the unique expected equilibrium payoff approaches the Nash bargaining solution as ϱ approaches 1 .

Section 4

Conclusions

Summary

Summary:

1. We design a decentralized protocol of bargaining (non-cooperative game) where no players are ever excluded.
2. We determine the final payoffs in equilibrium.
3. The final payoffs approach the Shapley NTU value.

Non-cooperative approaches

- Consistent value: Hart and Mas-Colell (Econometrica, 1996)
- Shapley NTU value: This research.
- Harsanyi value: Open question.

