Decentralized multilateral bargaining

Yuan Ju (University of York) Juan Vidal-Puga (Universidade de Vigo)

Outline

- 1. Nash program
- 2. Cooperative NTU games
- 3. Non-cooperative game
- 4. Conclusions

Section 1

Nash program

Game theory

Cooperative game theory

Non-cooperative game theory

Game theory

Cooperative game theory

Non-cooperative game theory

- Implementation
- Nash program
- Non-cooperative approach

Section 2

Cooperative NTU games

Transferable utility (TU) games

- Partial agreements
- Transferable utility
- Shapley value (1953)

Transferable utility (TU) games

- Partial agreements
- Transferable utility
- Shapley value (1953)

Bargaining problems

- Unanimity required
- Non-transferable utility
 - Nash solution (1950)

The model

A Non-Transferable Utility (NTU) game is a pair (N, V) where:

- $N = \{1, 2, ..., n\}$ is a set of players
- $V: S \subseteq N \rightarrow V(S) \subset \mathbb{R}^S$ correspondence satisfying:
 - \circ *V*(*S*) non-empty, closed, convex, comprehensive, and bounded-above.
 - Superadditivity: $V(S) \times V(T) \subset V(S \cup T)$ for all $S, T \subset N, S \cap T = \emptyset$.
 - V(S) nonlevel: For each x in the frontier of V(S), there exists a unique normalized vector λ orthogonal to V(S) on x with all its coordinates positive.

A **rule** is a function Φ that assigns to each NTU game (*N*,*V*) a payoff allocation Φ (*N*,*V*) \in *V*(*N*).

Example

Pure exchange economy with three players.

Water grains and water are required to prepare coffee. Sugar is optional.

- Player 1 has coffee grains, and prefers coffee with sugar.
- Player 2 has water.
- Player 3 has sugar.

Example

Pure exchange economy with three players.

Water grains and water are required to prepare coffee. Sugar is optional.

- Player 1 has coffee grains, and prefers coffee with sugar.
- Player 2 has water.
- Player 3 has sugar.

$$\begin{split} &V(\{i\}) = \{x \in \mathbb{R}^{\{i\}} : x_i \leq 0\} \\ &V(\{1,2\}) = \{x \in \mathbb{R}^{\{1,2\}} : 2x_1 + x_2 \leq 1\} \\ &V(\{1,3\}) = \{x \in \mathbb{R}^{\{1,3\}} : x_1, x_3 \leq 0\} \\ &V(\{2,3\}) = \{x \in \mathbb{R}^{\{2,3\}} : x_2, x_3 \leq 0\} \\ &V(N) = \{x \in \mathbb{R}^N : x_1 + x_2 + x_3 \leq 1\} \end{split}$$

The model

A **Transferable Utility (TU) game** is a pair (*N*, *v*) where:

- $N = \{1, 2, ..., n\}$ is a set of players
- $v: S \subseteq N \rightarrow v(S) \in \mathbb{R}$ correspondence satisfying $v(\emptyset) = 0$.

The model

A Transferable Utility (TU) game is a pair (N, v) where:

- $N = \{1, 2, ..., n\}$ is a set of players
- $v: S \subseteq N \rightarrow v(S) \in \mathbb{R}$ correspondence satisfying $v(\emptyset) = 0$.

Shapley value for TU games:

 $Sh_i(N,v) = \sum_{S \subset N: i \in S} d_v(S)/|S|$ where $d_v(S) \in \mathbb{R}$ are the Harsanyi dividends when of v. $Sh_i(N,v) = \sum_{\pi \in \Pi} m_i^{\pi}(v) / |\Pi|$

where $m^{\pi}(v) \in \mathbb{R}^N$ are the marginal contributions vectors of *v* under order π .

Any TU game is also an NTU game.

Any TU game is also an NTU game.

 $v({i})=0$ $v({1,2}) = 6$ $v({1,3}) = 6$ $v({2,3}) = 0$ v(N) = 6

Any TU game is also an NTU game.

 $v(\{i\})=0$ $v(\{1,2\}) = 6$ $v(\{1,3\}) = 6$ $v(\{2,3\}) = 0$ v(N) = 6

Sh(N,v) = (4,1,1)

Any TU game is also an NTU game.

$$\begin{array}{ll} v(\{i\}) = 0 & V(\{i\}) = \{x \in \mathbb{R}^{\{i\}} : x_i \leq 0\} \\ v(\{1,2\}) = 6 & V(\{1,2\}) = \{x \in \mathbb{R}^{\{1,2\}} : x_1 + x_2 \leq 6\} \\ v(\{1,3\}) = 6 & V(\{1,3\}) = \{x \in \mathbb{R}^{\{1,3\}} : x_1 + x_3 \leq 6\} \\ v(\{2,3\}) = 0 & V(\{2,3\}) = \{x \in \mathbb{R}^{\{2,3\}} : x_2 + x_3 \leq 0\} \\ v(N) = 6 & V(N) = \{x \in \mathbb{R}^N : x_1 + x_2 + x_3 \leq 6\} \end{array}$$

Sh(N,v) = (4,1,1)

Any TU game is also an NTU game.

$$\begin{array}{ll} v(\{i\}) = 0 & V(\{i\}) = \{x \in \mathbb{R}^{\{i\}} : x_i \leq 0\} \\ v(\{1,2\}) = 6 & V(\{1,2\}) = \{x \in \mathbb{R}^{\{1,2\}} : x_1 + x_2 \leq 6\} \\ v(\{1,3\}) = 6 & V(\{1,3\}) = \{x \in \mathbb{R}^{\{1,3\}} : x_1 + x_3 \leq 6\} \\ v(\{2,3\}) = 0 & V(\{2,3\}) = \{x \in \mathbb{R}^{\{2,3\}} : x_2 + x_3 \leq 0\} \\ v(N) = 6 & V(N) = \{x \in \mathbb{R}^N : x_1 + x_2 + x_3 \leq 6\} \end{array}$$

Sh(N,v) = (4,1,1) Sh(N,V) = (4,1,1)

Any TU game is also an NTU game.

If the utility is interchangeable at a fixed rate, the game is still (essentially) TU:

$v(\{i\})=0$	$V(\{i\}) = \{x \in \mathbb{R}^{\{i\}} : x_i \le 0\}$	$V(\{i\}) = \{x \in \mathbb{R}^{\{i\}} : \lambda_i x_i \le 0\}$
$v(\{1,2\}) = 6$	$V(\{1,2\}) = \{x \in \mathbb{R}^{\{1,2\}} : x_1 + x_2 \le 6\}$	$V(\{1,2\}) = \{x \in \mathbb{R}^{\{1,2\}} : \lambda_1 x_1 + \lambda_2 x_2 \le 6\}$
$v(\{1,3\}) = 6$	$V(\{1,3\}) = \{x \in \mathbb{R}^{\{1,3\}} : x_1 + x_3 \le 6\}$	$V(\{1,3\}) = \{x \in \mathbb{R}^{\{1,3\}} : \lambda_1 x_1 + \lambda_3 x_3 \le 6\}$
$v(\{2,3\}) = 0$	$V(\{2,3\}) = \{x \in \mathbb{R}^{\{2,3\}} : x_2 + x_3 \le 0\}$	$V(\{2,3\}) = \{x \in \mathbb{R}^{\{2,3\}} : \lambda_2 x_2 + \lambda_3 x_3 \le 0\}$
v(N) = 6	$V(N) = \{ x \in \mathbb{R}^N : x_1 + x_2 + x_3 \le 6 \}$	$V(N) = \{ x \in \mathbb{R}^N : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6 \}$

Sh(N,v) = (4,1,1) Sh(N,V) = (4,1,1)

Any TU game is also an NTU game.

If the utility is interchangeable at a fixed rate, the game is still (essentially) TU:

$v(\{i\})=0 V(\{i\}) = \{x \in \mathbb{R}^{\{i\}} : x_i \le 0\} V(\{i\}) = \{x \in \mathbb{R}^{\{i\}} : \lambda_i x_i \le 0\}$	
$v(\{1,2\}) = 6 \qquad V(\{1,2\}) = \{x \in \mathbb{R}^{\{1,2\}} : x_1 + x_2 \le 6\} \qquad V(\{1,2\}) = \{x \in \mathbb{R}^{\{1,2\}} : \lambda_1 x_1 + \lambda_2 x_2 \le 6\}$	6}
$v(\{1,3\}) = 6 \qquad V(\{1,3\}) = \{x \in \mathbb{R}^{\{1,3\}} : x_1 + x_3 \le 6\} \qquad V(\{1,3\}) = \{x \in \mathbb{R}^{\{1,3\}} : \lambda_1 x_1 + \lambda_3 x_3 \le 6\}$	
$v(\{2,3\}) = 0 \qquad V(\{2,3\}) = \{x \in \mathbb{R}^{\{2,3\}} : x_2 + x_3 \le 0\} \qquad V(\{2,3\}) = \{x \in \mathbb{R}^{\{2,3\}} : \lambda_2 x_2 + \lambda_3 x_3 \le 0\}$	
$v(N) = 6 V(N) = \{x \in \mathbb{R}^N : x_1 + x_2 + x_3 \le 6\} V(N) = \{x \in \mathbb{R}^N : \lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 \le 6\}$	

Sh(N,v) = (4,1,1) Sh(N,V) = (4,1,1)

 $Sh(N,V) = (4/\lambda_1, 1/\lambda_2, 1/\lambda_3)$

1. We give players money with exchange rates given by some $\lambda \in \Delta^N$.

- 1. We give players money with exchange rates given by some $\lambda \in \Delta^N$.
- 2. With such money acting as (transferable) utility, we have a TU game (N, v^{2}) .

- 1. We give players money with exchange rates given by some $\lambda \in \Delta^N$.
- 2. With such money acting as (transferable) utility, we have a TU game (N, v^2) .
- 3. We compute $Sh(N,v^{\lambda})$ using with this λ either the Harsanyi procedure or the average of marginal contributions vectors.

- 1. We give players money with exchange rates given by some $\lambda \in \Delta^N$.
- 2. With such money acting as (transferable) utility, we have a TU game (N, v^{i}) .
- 3. We compute $Sh(N,v^{\lambda})$ using with this λ either the Harsanyi procedure or the average of marginal contributions vectors.
- 4. If $Sh(N,v^{\lambda}) \in V(N)$, we say that $Sh(N,v^{\lambda})$ is a **Shapley NTU** value of (N,V).

The Shapley NTU value (Shapley, 1969)

 $(\lambda_1, \lambda_2, \lambda_3)$

Shap

value

Pure exchange economy with three players.

Water grains and water are required to prepare coffee. Sugar is optional.

- Player 1 has coffee grains, and prefers coffee with sugar.
- Player 2 has water.
- Player 3 has sugar.

Money as utility (alternative 1)

1. We give players money with exchange rates given by $(\lambda^S)_{S \subseteq N}$ with $\lambda^S \in \Delta^S$ for all $S \subseteq N$.

(Exchange rates depend on which players participate).

Money as utility (alternative 1)

1. We give players money with exchange rates given by $(\lambda^S)_{S \subseteq N}$ with $\lambda^S \in \Delta^S$ for all $S \subseteq N$.

(Exchange rates depend on which players participate).

2. With such money acting as (transferable) utility in each coalition, we can use the Harsanyi procedure with λ^N in order to compute a payoff allocation $H(N,v^{\lambda})$.

Money as utility (alternative 1)

1. We give players money with exchange rates given by $(\lambda^S)_{S \subseteq N}$ with $\lambda^S \in \Delta^S$ for all $S \subseteq N$.

(Exchange rates depend on which players participate).

- 2. With such money acting as (transferable) utility in each coalition, we can use the Harsanyi procedure with λ^N in order to compute a payoff allocation $H(N,v^{\lambda})$.
- 3. If $H(N,v^{\lambda}) \in V(N)$, we say that $H(N,v^{\lambda})$ is a **Harsanyi value** of (N,V).

The Harsanyi value (Harsanyi, 1963)

Harsanyi

value

▲ 3

Pure exchange economy with three players.

Water grains and water are required to prepare coffee. Sugar is optional.

- Player 1 has coffee grains, and prefers coffee with sugar.
- Player 2 has water.
- Player 3 has sugar.

Money as utility (alternative 2)

1. We give players money with exchange rates given by $(\lambda^S)_{S \subseteq N}$ with $\lambda^S \in \Delta^S$ for all $S \subseteq N$.

(Exchange rates depend on which players participate).

Money as utility (alternative 2)

1. We give players money with exchange rates given by $(\lambda^S)_{S \subseteq N}$ with $\lambda^S \in \Delta^S$ for all $S \subseteq N$.

(Exchange rates depend on which players participate).

2. With such money acting as (transferable) utility in each coalition, we can use the average of marginal contributions vectors with each λ^{S} in order to compute a payoff allocation $C(N, v^{\lambda})$.

Money as utility (alternative 2)

1. We give players money with exchange rates given by $(\lambda^S)_{S \subseteq N}$ with $\lambda^S \in \Delta^S$ for all $S \subseteq N$.

(Exchange rates depend on which players participate).

- 2. With such money acting as (transferable) utility in each coalition, we can use the average of marginal contributions vectors with each λ^S in order to compute a payoff allocation $C(N, v^{\lambda})$.
- 3. If $C(N,v^{\lambda}) \in V(N)$, we say that $C(N,v^{\lambda})$ is a **consistent value** of (N,V).

The consistent value (Maschler and Owen, 1992)

Pure exchange economy with three players.

Water grains and water are required to prepare coffee. Sugar is optional.

- Player 1 has coffee grains, and prefers coffee with sugar.
- Player 2 has water.
- Player 3 has sugar.

consistent

value

Generalizations of the Shapley value

		Exchange rate		
			Coalition dependent $(\lambda^{S})_{S \subseteq N}$, $\lambda^{S} \in \Delta^{S} \forall S \subseteq N$	Constant $\lambda \in \Delta^N$
procedure	Harsanyi dividends	λ^S		
		λ^N		
	average of marg contributions ver			

Generalizations of the Shapley value

		Exchange rate		
			Coalition dependent $(\lambda^{S})_{S \subseteq N}$, $\lambda^{S} \in \Delta^{S} \forall S \subseteq N$	Constant $\lambda \in \Delta^N$
procedure	Harsanyi dividends	λ^S		
		λ^N		Shapley NTU
	average of marginal contributions vectors			value

Generalizations of the Shapley value

		Exchange rate		
			Coalition dependent $(\lambda^{S})_{S \subseteq N}$, $\lambda^{S} \in \Delta^{S} \forall S \subseteq N$	Constant $\lambda \in \Delta^N$
procedure	Harsanyi dividends	λ^S		Shapley NTU
		λ^N	Harsanyi value	
	average of marginal contributions vectors			value

Generalizations of the Shapley value

		Exchange rate		
			Coalition dependent $(\lambda^{S})_{S \subseteq N}$, $\lambda^{S} \in \Delta^{S} \forall S \subseteq N$	Constant $\lambda \in \Delta^N$
procedure	Harsanyi dividends	λ^{S}		Shapley NTU
		λ^N	Harsanyi value	
	average of marginal contributions vectors		Consistent value	value

Generalizations of the Shapley value

		Exchange rate		
			Coalition dependent $(\lambda^{S})_{S \subseteq N}$, $\lambda^{S} \in \Delta^{S} \forall S \subseteq N$	Constant $\lambda \in \Delta^N$
procedure	Harsanyi dividends	λ^{S}	(Consistent Harsanyi value)	Shapley NTU
		λ^N	Harsanyi value	
	average of marginal contributions vectors		Consistent value	value

Section 3

Non-cooperative game

Implementation of the Nash solution in bargaining games

- Nash (Econometrica, 1953)
- Rubinstein (Econometrica, 1982)
- van Damme (JET, 1986)
- Binmore ("The economics of bargaining", ed. by Binmore and Dasgupta, 1987)
- Maschler, Owen and Peleg ("The Shapley value", ed. by Roth, 1988)
- Hart and Mas-Colell (Econometrica, 1996)

Implementation of the Shapley value in TU games

- Gul (Econometrica, 1989)
- Hart and Moore (J Pol Ec, 1990)
- Winter (ET, 1994)
- Evans (GEB, 1992)
- Hart and Mas-Colell (Econometrica, 1996)
- Dasgupta and Chiu (IJGT, 1998)
- Pérez-Castrillo and Wettstein (JET, 2001)
- Vidal-Puga (EJOR, 2008)
- Ju (JME, 2012)

Common features when dealing with partial agreements

- Players "play" (*make offers and counteroffers, agree or disagree, vote, make partial payoffs, ...*) in *N*.
- Eventually, players split (or some are simply excluded) and the bargaining goes on in some (or several) subcoalition *S*, without possibility to rejoin.
- The risk of these splits is the tool that make players in *N* to reach an agreement in equilibrium.

Alternative features when dealing with partial agreements

- Players "play" (make offers and counteroffers, agree or disagree, vote, make partial payoffs, ...) in *N*, but their offers also consider the payoffs in case of disagreement.
- Players never split (nor are excluded) nor the bargaining goes on in some (or several) subcoalition *S*.
- The risk of disagreement is the tool that make players in *N* to reach an agreement in equilibrium.

Common and alternative features when dealing with partial agreements

- Players "play" (make offers and counteroffers, agree or disagree, vote, make partial payoffs, etc) in *N*.
- Eventually, players split (or some are simply excluded) and the bargaining goes on in some (or several) subcoalition *S*, without possibility to rejoin.
- The risk of these splits is the tool that make players in *N* to reach an agreement in equilibrium.

- Players "play" (make offers and counteroffers, agree or disagree, vote, make partial payoffs, etc) in N, but their offers also consider the payoffs in case of disagreement.
- Players never split (nor are excluded) nor the bargaining goes on in some (or several) subcoalition *S*.
- The risk of disagreement is the tool that make players in *N* to reach an agreement in equilibrium.

The non-cooperative game: Rounds 1 and 2

An order of the players is randomly chosen (assume 12...*n*).

- 1. Player 1 presents a rule $f: S \subseteq N \rightarrow f(S) \subseteq V(S)$.
- 2. Player 2 either
 - a. agrees on f and joins $\{1\}$, or
 - b. disagrees and proposes a new rule f^* to player 1.
 - i. If player 1 accepts, $\{1,2\}$ forms with rule f^* , and the turn passes to player 3.
 - ii. If player 2 rejects, it does not join $\{1\}$ and the turn passes to player 3.

The non-cooperative game: Round r

Player r faces $((S^1, f^1), \dots, (S^k, f^k))$ where

- $\{S^1,...,S^k\}$ is a partition of $\{1,...,r-1\}$ and
- $(f^1,...,f^k)$ is the vector of rules they have respectively agreed upon.

Player *r* either

- 1. agrees on some (S^l, f^l) and joins S^l , or
- 2. disagrees and proposes a new rule f^* to everyone.
 - a. If some coalitions accept (unanimity required inside), they form a new merged coalition with r and rule f^* , and the turn passes to player r + 1.
 - b. If all coalitions reject, player *r* does not join any coalition and the turn passes to r + 1 with $((S^1, f^1), ..., (S^k, f^k), (\{r\}, f^*))$.

Round r

Last round (n + 1)

- If we face (({N}),(f)), i.e., all coalitions have unanimously agreed on a single rule *f*, then each *i*∈*N* receives *f_i*(*N*) and the game finishes.
- If we face $((S^1, f^1), ..., (S^k, f^k))$ with k > 1, i.e., there is no unanimity, then
 - With probability $\rho \in [0,1)$, the whole process is repeated with a new order.
 - With probability 1ρ , each $i \in S^l$ receives $f_i^l(S^l)$ and the game finishes.

Main result

There exists a stationary subgame perfect equilibrium payoff allocation for each order. Moreover, this payoff allocation is efficient and individually rational.

Furthermore, as ρ approaches 1, the expected final payoff allocation approaches a Shapley NTU value.

Corollary:

- For TU games, the Shapley value is the unique expected equilibrium payoff.
- For bargaining problems, the unique expected equilibrium payoff approaches the Nash bargaining solution as *ρ* approaches 1.

Section 4

Conclusions

Summary

Summary:

1. We design a decentralized protocol of bargaining (non-cooperative game) where no players are ever excluded.

2. We determine the final payoffs in equilibrium.

3. The final payoffs approach the Shapley NTU value.

Non-cooperative approaches

- Consistent value: Hart and Mas-Colell (Econometrica, 1996)
- Shapley NTU value: This research.
- Harsanyi value: Open question.